搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线缺陷石墨烯纳米带的电输运研究

丁锦廷 胡沛佳 郭爱敏

引用本文:
Citation:

线缺陷石墨烯纳米带的电输运研究

丁锦廷, 胡沛佳, 郭爱敏

Electron transport in graphene nanoribbons with line defects

Ding Jin-Ting, Hu Pei-Jia, Guo Ai-Min
PDF
HTML
导出引用
  • 石墨烯的能带工程是当前凝聚态物理的热点问题, 旨在费米能级处打开能隙. 另外实验报道石墨烯存在多种线缺陷, 但人们尚未讨论线缺陷与石墨烯能带工程间的关系. 本文采用Landauer-Büttiker公式及格林函数方法, 研究了三种4-8环线缺陷随机排列方式对石墨烯纳米带电输运的影响. 计算结果发现: 尽管4-8环线缺陷随机分布的石墨烯纳米带在费米能级处存在电子态, 但该电子态为局域态且体系在费米能级处存在透射能隙, 这是由线缺陷随机排列诱导产生结构无序进而引起的Anderson局域化现象. 当线缺陷无序程度较低或纳米带宽度较窄时, 石墨烯纳米带的透射能隙依赖4-8环线缺陷的随机排列方式; 随着线缺陷无序程度的增强或纳米带宽度的增加, 三种线缺陷石墨烯纳米带的透射能隙趋于一致. 总之, 4-8环线缺陷随机分布的石墨烯纳米带具有透射能隙, 该能隙对线缺陷的排列方式、无序程度及纳米带宽度均表现稳健性.
    Bandgap engineering in graphene has been a hot topic in condensed matter physics. Although several line defects have been experimentally reported in graphene, the relationship between the bandgap engineering and the line defects has not yet been discussed. In this work, by combining the Green’s function method with the Landauer-Büttiker formula, we study theoretically the electron transport along disordered ZGNRs through taking into account three types of line defects which arise from random distribution of 4-8 rings. Our results show that although there exist electronic states around the Fermi energy of the disordered ZGNRs with randomly distributed line defects, all these electronic states are localized and a transmission gap appears around the Fermi energy. This localization phenomenon originates from the structural disorder induced by the randomly distributed line defects. To demonstrate the robustness of transmission gaps, we further calculate the conductance values of disordered ZGNR with different insertion probabilities and widths, finding that the size of transmission gap strongly depends upon the types of disorder, disorder degree, and width. When the disorder degree of line defects is low or the width of the nanoribbon is narrow, there is a notable difference in the size of the transmission gaps among the three types of disordered ZGNRs. As the width or disorder degree increases, the transmission gap size tends to be consistent. Like armchair ZGNRs, the transmission gap size decreases with the increase of width or disorder of ZGNR. Nonetheless, the openings of the transmission gaps in three types of disordered ZGNRs remain robust, regardless of variations in degree of disorder or width. These results are helpful in designing line-defect based nanodevices.
      通信作者: 郭爱敏, aimin.guo@csu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12274466)、湖南省杰出青年科学基金 (批准号: 2023JJ10058)和中南大学高性能计算平台资助的课题.
      Corresponding author: Guo Ai-Min, aimin.guo@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12274466), the Hunan Provincial Science Fund for Distinguished Young Scholars, China (Grant No. 2023JJ10058), and the High Performance Computing Center of Central South University, China.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337Google Scholar

    [3]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [4]

    Xu X R, Cheng S G 2013 J. Phys. Condens. Matter 25 075304Google Scholar

    [5]

    Huang Y L, Wang K T, Xing Y, Liu G B, Zhao H K 2019 Carbon 143 641Google Scholar

    [6]

    Cheng S G, Liu H, Jiang H, Sun Q F, Xie X C 2018 Phys. Rev. Lett. 121 156801Google Scholar

    [7]

    Wei M, Zhou M, Wang B, Xing Y 2020 Phys. Rev. B 102 075432Google Scholar

    [8]

    陈兴, 赵晗, 张艳, 刘露, 杨志宏, 宋玲玲 2021 物理学报 70 198503Google Scholar

    Chen X, Zhao H, Zhang Y, Liu L, Yang Z H, Song L L 2021 Acta Phys. Sin. 70 198503Google Scholar

    [9]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [10]

    Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Physica E 128 114542Google Scholar

    [11]

    刘贵立, 杨忠华 2018 物理学报 67 076301Google Scholar

    Liu G L, Yang Z H, 2018 Acta Phys. Sin. 67 076301Google Scholar

    [12]

    张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰 2017 物理学报 66 217301Google Scholar

    Zhang H Z, Li J T, Lv W G, Yang H F, Tang C C, Gu C Z, Li J J 2017 Acta Phys. Sin. 66 217301Google Scholar

    [13]

    Merino Díez N, Garcia Lekue A, Carbonell Sanromà E, Li J, Corso M, Colazzo L, Sedona F, Sánchez Portal D, Pascual J I, de Oteyza D G 2017 ACS Nano 11 11661Google Scholar

    [14]

    Zhou M, Jin H, Xing Y 2020 Phys. Rev. Appl. 13 044006Google Scholar

    [15]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [16]

    Islam A E, Susner M A, Carpena Núñez J, Back T C, Rao R, Jiang J, Pachter R, Tenney S A, Boeckl J J, Maruyama B 2020 Carbon 166 446Google Scholar

    [17]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326Google Scholar

    [18]

    Fei Y, Fu Y, Bai X, Du L, Li Z, Komber H, Low K H, Zhou S, Phillips D L, Feng X, Liu J 2021 J. Am. Chem. Soc. 143 2353Google Scholar

    [19]

    Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X, Zhong D 2017 Nat. Commun. 8 14924Google Scholar

    [20]

    Fan Q, Yan L, Tripp M W, Krejčí O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P 2021 Science 372 852Google Scholar

    [21]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806Google Scholar

    [22]

    Song J, Liu H, Jiang H, Sun Q F, Xie X C 2012 Phys. Rev. B 86 085437Google Scholar

    [23]

    Tong Z, Pecchia A, Yam C, Dumitrică T, Frauenheim T 2022 Adv. Energy Mater. 12 2200657Google Scholar

    [24]

    Kong W, Wang R, Xiao X, Zhan F, Gan L Y, Wei J, Fan J, Wu X 2021 J. Phys. Chem. Lett. 12 10874Google Scholar

    [25]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [26]

    Zhang Y T, Jiang H, Sun Q F, Xie X C 2010 Phys. Rev. B 81 165404Google Scholar

    [27]

    Chen L, Ouyang F, Ma S, Fang T F, Guo A M, Sun Q F, 2020 Phys. Rev. B 101 115417Google Scholar

    [28]

    Hu P J, Wang S X, Chen X F, Gao X H, Fang T F, Guo A M, Sun Q F 2022 Phys. Rev. Appl. 17 024074Google Scholar

    [29]

    Sancho M L, Sancho J L, Rubio J 1984 J. Phys. F: Met. Phys. 14 1205Google Scholar

    [30]

    Sancho M L, Sancho J L, Sancho J L, Rubio J 1985 J. Phys. F:Met. Phys. 15 851Google Scholar

    [31]

    王雪梅, 刘红 2011 物理学报 60 047102Google Scholar

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102Google Scholar

  • 图 1  ZGNR和三类无序ZGNRs示意图 (a) ZGNR; (b), (c), (d) 第I, II和III类无序ZGNRs与左右半无限长ZGNRs耦合形成的二端体系

    Fig. 1.  Schematic diagrams of ZGNR and three types of disordered ZGNRs: (a) ZGNR; (b), (c), (d) the two-terminal system constructed by the type I, II and III disordered ZGNRs coupled to left and right semi-infinite ZGNRs, respectively.

    图 2  完美ZGNR和三类无序ZGNRs的电子结构和电输运性质 (a) 态密度随E的变化曲线; (b) 平均电导$ \left\langle G \right\rangle $E的变化曲线, 其中左纵坐标对应无序ZGNRs, 右纵坐标对应完美ZGNR. 对于所有ZGNRs: N =10, M = 10000

    Fig. 2.  Electronic structures and transport properties of perfect ZGNR and three types of disordered ZGNRs: (a) Density of states as a function of E for perfect ZGNR and three types of disordered ZGNRs; (b) averaged conductance $ \left\langle G \right\rangle $ as a function of E for perfect ZGNR (right axis) and three types of disordered ZGNRs (left axis). Here, N = 10 and M = 10000 for all ZGNRs.

    图 3  三类无序ZGNRs在不同概率P下的$ \left\langle G \right\rangle $E的变化曲线 (a), (b), (c) 分别对应第I, II和III类无序ZGNRs. 对于所有ZGNRs: N = 10, M =10000

    Fig. 3.  $ \left\langle G \right\rangle $ as a function of E for three types of disordered ZGNRs for different probabilities P. (a), (b) and (c) correspond to three types of disordered ZGNRs, respectively. Here, N = 10 and M = 10000 for all disordered ZGNRs.

    图 4  三类无序ZGNRs在不同宽度N下的$ \left\langle G \right\rangle $E的变化曲线 (a), (b), (c) 分别对应第I, II和III类无序ZGNRs. 其中插图为重整化电导与E的关系, 重整化电导定义为平均电导与无序ZGNRs宽度的比值. 对于所有ZGNRs: P = 0.5, M = 10000

    Fig. 4.  $ \left\langle G \right\rangle $ as a function of E for three types of disordered ZGNRs for different widths N: (a), (b), (c) correspond to three types of disordered ZGNRs, respectively. Here, the insets denote the renormalized conductance which is defined as the ratio of $ \left\langle G \right\rangle $ to N. P = 0.5 and M = 10000 for all disordered ZGNRs.

    图 5  三类无序ZGNRs在费米能级附近的透射能隙Eg随宽度N的关系. 对于所有ZGNRs: P = 0.5, M = 10000

    Fig. 5.  Size of transmission gaps Eg as a function of N for three type of disordered ZGNRs. Here, P = 0.5 and M = 10000 for all ZGNRs.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D E, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Beenakker C W J 2008 Rev. Mod. Phys. 80 1337Google Scholar

    [3]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 226801Google Scholar

    [4]

    Xu X R, Cheng S G 2013 J. Phys. Condens. Matter 25 075304Google Scholar

    [5]

    Huang Y L, Wang K T, Xing Y, Liu G B, Zhao H K 2019 Carbon 143 641Google Scholar

    [6]

    Cheng S G, Liu H, Jiang H, Sun Q F, Xie X C 2018 Phys. Rev. Lett. 121 156801Google Scholar

    [7]

    Wei M, Zhou M, Wang B, Xing Y 2020 Phys. Rev. B 102 075432Google Scholar

    [8]

    陈兴, 赵晗, 张艳, 刘露, 杨志宏, 宋玲玲 2021 物理学报 70 198503Google Scholar

    Chen X, Zhao H, Zhang Y, Liu L, Yang Z H, Song L L 2021 Acta Phys. Sin. 70 198503Google Scholar

    [9]

    Fu H Y, Sun F, Liu R, Suo Y Q, Bi J J, Wang C K, Li Z L 2019 Phys. Lett. A 383 867Google Scholar

    [10]

    Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K, Li Z L 2021 Physica E 128 114542Google Scholar

    [11]

    刘贵立, 杨忠华 2018 物理学报 67 076301Google Scholar

    Liu G L, Yang Z H, 2018 Acta Phys. Sin. 67 076301Google Scholar

    [12]

    张慧珍, 李金涛, 吕文刚, 杨海方, 唐成春, 顾长志, 李俊杰 2017 物理学报 66 217301Google Scholar

    Zhang H Z, Li J T, Lv W G, Yang H F, Tang C C, Gu C Z, Li J J 2017 Acta Phys. Sin. 66 217301Google Scholar

    [13]

    Merino Díez N, Garcia Lekue A, Carbonell Sanromà E, Li J, Corso M, Colazzo L, Sedona F, Sánchez Portal D, Pascual J I, de Oteyza D G 2017 ACS Nano 11 11661Google Scholar

    [14]

    Zhou M, Jin H, Xing Y 2020 Phys. Rev. Appl. 13 044006Google Scholar

    [15]

    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S 2004 Nature 430 870Google Scholar

    [16]

    Islam A E, Susner M A, Carpena Núñez J, Back T C, Rao R, Jiang J, Pachter R, Tenney S A, Boeckl J J, Maruyama B 2020 Carbon 166 446Google Scholar

    [17]

    Lahiri J, Lin Y, Bozkurt P, Oleynik I I, Batzill M 2010 Nat. Nanotechnol. 5 326Google Scholar

    [18]

    Fei Y, Fu Y, Bai X, Du L, Li Z, Komber H, Low K H, Zhou S, Phillips D L, Feng X, Liu J 2021 J. Am. Chem. Soc. 143 2353Google Scholar

    [19]

    Liu M, Liu M, She L, Zha Z, Pan J, Li S, Li T, He Y, Cai Z, Wang J, Zheng Y, Qiu X, Zhong D 2017 Nat. Commun. 8 14924Google Scholar

    [20]

    Fan Q, Yan L, Tripp M W, Krejčí O, Dimosthenous S, Kachel S R, Chen M, Foster A S, Koert U, Liljeroth P 2021 Science 372 852Google Scholar

    [21]

    Gunlycke D, White C T 2011 Phys. Rev. Lett. 106 136806Google Scholar

    [22]

    Song J, Liu H, Jiang H, Sun Q F, Xie X C 2012 Phys. Rev. B 86 085437Google Scholar

    [23]

    Tong Z, Pecchia A, Yam C, Dumitrică T, Frauenheim T 2022 Adv. Energy Mater. 12 2200657Google Scholar

    [24]

    Kong W, Wang R, Xiao X, Zhan F, Gan L Y, Wei J, Fan J, Wu X 2021 J. Phys. Chem. Lett. 12 10874Google Scholar

    [25]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [26]

    Zhang Y T, Jiang H, Sun Q F, Xie X C 2010 Phys. Rev. B 81 165404Google Scholar

    [27]

    Chen L, Ouyang F, Ma S, Fang T F, Guo A M, Sun Q F, 2020 Phys. Rev. B 101 115417Google Scholar

    [28]

    Hu P J, Wang S X, Chen X F, Gao X H, Fang T F, Guo A M, Sun Q F 2022 Phys. Rev. Appl. 17 024074Google Scholar

    [29]

    Sancho M L, Sancho J L, Rubio J 1984 J. Phys. F: Met. Phys. 14 1205Google Scholar

    [30]

    Sancho M L, Sancho J L, Sancho J L, Rubio J 1985 J. Phys. F:Met. Phys. 15 851Google Scholar

    [31]

    王雪梅, 刘红 2011 物理学报 60 047102Google Scholar

    Wang X M, Liu H 2011 Acta Phys. Sin. 60 047102Google Scholar

  • [1] 王玉, 梁钰林, 邢燕霞. 石墨烯中的拓扑安德森绝缘体相. 物理学报, 2025, 74(4): . doi: 10.7498/aps.74.20241031
    [2] 崔磊, 刘洪梅, 任重丹, 杨柳, 田宏玉, 汪萨克. 石墨烯线缺陷局域形变对谷输运性质的影响. 物理学报, 2023, 72(16): 166101. doi: 10.7498/aps.72.20230736
    [3] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 物理学报, 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [4] 方静云, 孙庆丰. 石墨烯p-n结在磁场中的电输运热耗散. 物理学报, 2022, 71(12): 127203. doi: 10.7498/aps.71.20220029
    [5] 胡海涛, 郭爱敏. 双层硼烯纳米带的量子输运研究. 物理学报, 2022, 71(22): 227301. doi: 10.7498/aps.71.20221304
    [6] 左敏, 廖文虎, 吴丹, 林丽娥. 石墨烯纳米带电极同分异构喹啉分子结电子输运性质. 物理学报, 2019, 68(23): 237302. doi: 10.7498/aps.68.20191154
    [7] 吴歆宇, 韩伟华, 杨富华. 硅纳米结构晶体管中与杂质量子点相关的量子输运. 物理学报, 2019, 68(8): 087301. doi: 10.7498/aps.68.20190095
    [8] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [9] 陈伟, 陈润峰, 李永涛, 俞之舟, 徐宁, 卞宝安, 李兴鳌, 汪联辉. 基于石墨烯电极的Co-Salophene分子器件的自旋输运. 物理学报, 2017, 66(19): 198503. doi: 10.7498/aps.66.198503
    [10] 邓小清, 孙琳, 李春先. 界面铁掺杂锯齿形石墨烯纳米带的自旋输运性能. 物理学报, 2016, 65(6): 068503. doi: 10.7498/aps.65.068503
    [11] 张华林, 孙琳, 王鼎. 含单排线缺陷锯齿型石墨烯纳米带的电磁性质. 物理学报, 2016, 65(1): 016101. doi: 10.7498/aps.65.016101
    [12] 李彪, 徐大海, 曾晖. 边缘重构对锯齿型石墨烯纳米带电子输运的影响. 物理学报, 2014, 63(11): 117102. doi: 10.7498/aps.63.117102
    [13] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [14] 张迷, 陈元平, 张再兰, 欧阳滔, 钟建新. 堆叠石墨片对锯齿型石墨纳米带电子输运的影响. 物理学报, 2011, 60(12): 127204. doi: 10.7498/aps.60.127204
    [15] 马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力. 机械剥离法制备石墨烯纳米带及其低温电输运性质研究. 物理学报, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [16] 林琦, 陈余行, 吴建宝, 孔宗敏. N掺杂对zigzag型石墨烯纳米带的能带结构和输运性质的影响. 物理学报, 2011, 60(9): 097103. doi: 10.7498/aps.60.097103
    [17] 王志勇, 胡慧芳, 顾林, 王巍, 贾金凤. 含Stone-Wales缺陷zigzag型石墨烯纳米带的电学和光学性能研究. 物理学报, 2011, 60(1): 017102. doi: 10.7498/aps.60.017102
    [18] 谭长玲, 谭振兵, 马丽, 陈军, 杨帆, 屈凡明, 刘广同, 杨海方, 杨昌黎, 吕力. 石墨烯纳米带量子点中的量子混沌现象. 物理学报, 2009, 58(8): 5726-5729. doi: 10.7498/aps.58.5726
    [19] 戴振宏, 倪 军. 基于格林函数的多终端量子链状体系电子输运性质的研究. 物理学报, 2005, 54(7): 3342-3345. doi: 10.7498/aps.54.3342
    [20] 郭汝海, 时红艳, 孙秀冬. 用格林函数法计算量子点中的应变分布. 物理学报, 2004, 53(10): 3487-3492. doi: 10.7498/aps.53.3487
计量
  • 文章访问数:  4246
  • PDF下载量:  159
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-01
  • 修回日期:  2023-05-12
  • 上网日期:  2023-05-25
  • 刊出日期:  2023-08-05

/

返回文章
返回