搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正弦微波磁场驱动亚铁磁畴壁动力学

赵晨蕊 魏云昕 刘婷婷 秦明辉

引用本文:
Citation:

正弦微波磁场驱动亚铁磁畴壁动力学

赵晨蕊, 魏云昕, 刘婷婷, 秦明辉

Dynamics of ferrimagnetic domain walls driven by sinusoidal microwave magnetic field

Zhao Chen-Rui, Wei Yun-Xin, Liu Ting-Ting, Qin Ming-Hui
PDF
HTML
导出引用
  • 亚铁磁畴壁在角动量补偿点附近具有非零净磁化强度, 同时具有超快动力学性质, 有望应用于未来的自旋电子学存储和逻辑器件中. 探寻低能耗和高效驱动畴壁的手段和机制可以为实验设计和器件开发提供重要参考. 本文使用理论分析和微磁学模拟研究了亚铁磁畴壁在正弦微波磁场驱动下的动力学行为, 表明了微波磁场在一定的频率范围内可有效驱动畴壁运动, 使得人们可通过调制不同频率的微波磁场来调控畴壁动力学. 本文详细分析和解释了正弦微波磁场驱动亚铁磁畴壁的物理机理, 探讨了双轴各向异性等参数对畴壁运动速度的影响, 表明了磁各向异性和外加微波磁场频率等参量对不同净自旋角动量亚铁磁畴壁的调控行为.
    Ferrimagnetic domain walls have received more and more attention because of their interesting physics and potential applications in future spintronic devices, particularly attributing their non-zero net magnetization and ultrafast dynamics. Exploring effective methods of driving domain walls with low energy consumption and high efficiency can provide important information for experimental design and device development. In this work, we study theoretically and numerically the dynamics of ferrimagnetic domain wall driven by the sinusoidal microwave magnetic field using the collective coordinate theory and Landau-Lifshitz-Gilbert simulations of atomistic spin model. It is revealed that the microwave field drives the propagation of the domain wall when the frequency falls into an appropriate range, which allows one to modulate the domain wall dynamics through tuning field frequency. Specifically, below the critical frequency, the domain wall velocity is proportional to the field frequency and the net angular momentum, while above the critical frequency, the domain wall velocity decreases rapidly to zero . The physical mechanisms of the results are discussed in detail, and the influences of the biaxial anisotropy and other parameters on the velocity of domain wall are studied. It is suggested that the wall dynamics can be effectively regulated by adjusting the basic magnetic structure and magnetic anisotropy, in addition to the external microwave field frequency. This work uncovers the interesting dynamics of ferrimagnetic domain wall driven by sinusoidal microwave magnetic field, which is helpful for designing domain wall-based spintronic device.
      通信作者: 秦明辉, qinmh@scnu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: U22A20117, 52371243, 51971096)、广东省自然科学基金(批准号: 2022A1515011727)和广州市科技计划项目(批准号: 202201000008)资助的课题.
      Corresponding author: Qin Ming-Hui, qinmh@scnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of China (Grants No. U22A20117, 52371243, 51971096), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2022A1515011727), and the Funding by Science and Technology Projects in Guangzhou, China (Grant No. 202201000008).
    [1]

    Žutić I, Fabian J, Sarma S Das 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    赵巍胜, 张博宇, 彭守仲 2022 自旋电子科学与技术 (北京: 人民邮电出版社) 第6页

    Zhao W S, Zhang B Y, Peng S Z 2022 Spintronic Science and Technology (Beijing: Posts and Telecommunications Press) p6

    [3]

    韩秀峰 2014 自旋电子学导论(上卷) (北京: 科学出版社) 第10页

    Han X F 2014 Introduction to Spintronics (Vol. 1) (Beijing: Science Press) p10

    [4]

    Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar

    [5]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [6]

    Yu W, Lan J, Xiao J 2018 Phys. Rev. B 98 144422Google Scholar

    [7]

    Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M 2020 Phys. Rev. Res. 2 013166Google Scholar

    [8]

    Jin Z, Liu T T, Li W H, Zhang X M, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2020 Phys. Rev. B 102 054419Google Scholar

    [9]

    Chen Z Y, Qin M H, Liu J M 2019 Phys. Rev. B 100 020402(RGoogle Scholar

    [10]

    Zhang Y L, Chen Z Y, Yan Z R, Chen D Y, Fan Z, Qin M H 2018 Appl. Phys. Lett. 113 112403Google Scholar

    [11]

    Selzer S, Atxitia U, Ritzmann U, Hinzke D, Nowak U 2016 Phys. Rev. Lett. 117 107201Google Scholar

    [12]

    Tveten E G, Qaiumzadeh A, Brataas A 2014 Phys. Rev. Lett. 112 147204Google Scholar

    [13]

    Jin Z, Meng C Y, Liu T T, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2021 Phys. Rev. B 104 054419Google Scholar

    [14]

    Zvezdin A K, Gareeva Z V, Zvezdin K A 2020 J. Magn. Magn. Mater. 509 166876Google Scholar

    [15]

    Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar

    [16]

    Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar

    [17]

    Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar

    [18]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar

    [19]

    Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438Google Scholar

    [20]

    Sun C, Yang H, Jalil M B A 2020 Phys. Rev. B 102 134420Google Scholar

    [21]

    Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [22]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [23]

    Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar

    [24]

    Martínez E, Raposo V, Alejos Ó 2019 J. Magn. Magn. Mater. 491 165545Google Scholar

    [25]

    Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X, Tang W 2014 Phys. Rev. B 89 144418Google Scholar

    [26]

    Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M 2018 New J. Phys. 20 063003Google Scholar

    [27]

    Jin M, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar

    [28]

    Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Met. 41 3815Google Scholar

    [29]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmond K, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

  • 图 1  磁矩排列示意图 (a)铁磁; (b)亚铁磁; (c)反铁磁

    Fig. 1.  Spin configurations: (a) Ferromagnetic; (b) ferrimagnetic; (c) antiferromagnetic states.

    图 2  一维亚铁磁纳米线畴壁结构以及外加正弦微波磁场示意图

    Fig. 2.  Schematic depiction of a one-dimensional ferrimagnetic nanowire along the z direction with a domain wall under a sinusoidal microwave magnetic field.

    图 3  h0 = 0.11J, 理论计算(实线)和模拟(实心点)不同δs下的畴壁速度v(ω)

    Fig. 3.  The calculated (solid lines) and simulated (solid points) v as a function of ω for various δs under h0 = 0.11J.

    图 4  不同频率下, 畴壁面角ϕ振荡, 红线表示微波场的相位 (a) ω = 0.035, δs = –0.0218和0.0218; (b) ω = 0.21, δs = –0.0218; (c) ω = 0.24, δs = –0.0218

    Fig. 4.  The domain wall angle ϕ and phase position (red line) of microwave field as functions of time: (a) ω = 0.035, δs = –0.0218 and 0.0218; (b) ω = 0.21, δs = –0.0218; (c) ω = 0.24, δs = –0.0218.

    图 5  (a) Kx = 0.004J时不同Kz, (b) Kz = 0.010J时不同Kx下模拟的v(ω)曲线

    Fig. 5.  The simulated v(ω) curves (a) for various Kz at Kx = 0.004J, and (b) for various Kx at Kz = 0.010J.

    表 1  模拟选择的参数, 参数4为角动量补偿点TA, 净自旋密度δs = 0

    Table 1.  Parameters chosen for the simulations, the fourth parameter set corresponds to the angular momentum compensation point TA with the net spin density δs = 0.

    参数 1 2 3 4 5 6 7
    M1 ( μs ) 1.13 1.12 1.11 1.10 1.09 1.08 1.07
    M2 ( μs ) 1.06 1.04 1.02 1.0 0.98 0.96 0.94
    δs ( μs/γ ) –0.03273 –0.0218 –0.0109 0 0.0109 0.0218 0.03273
    下载: 导出CSV
  • [1]

    Žutić I, Fabian J, Sarma S Das 2004 Rev. Mod. Phys. 76 323Google Scholar

    [2]

    赵巍胜, 张博宇, 彭守仲 2022 自旋电子科学与技术 (北京: 人民邮电出版社) 第6页

    Zhao W S, Zhang B Y, Peng S Z 2022 Spintronic Science and Technology (Beijing: Posts and Telecommunications Press) p6

    [3]

    韩秀峰 2014 自旋电子学导论(上卷) (北京: 科学出版社) 第10页

    Han X F 2014 Introduction to Spintronics (Vol. 1) (Beijing: Science Press) p10

    [4]

    Chen X Z, Zarzuela R, Zhang J, Song C, Zhou X F, Shi G Y, Li F, Zhou H A, Jiang W J, Pan F, Tserkovnyak Y 2018 Phys. Rev. Lett. 120 207204Google Scholar

    [5]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [6]

    Yu W, Lan J, Xiao J 2018 Phys. Rev. B 98 144422Google Scholar

    [7]

    Wen D L, Chen Z Y, Li W H, Qin M H, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Liu J M 2020 Phys. Rev. Res. 2 013166Google Scholar

    [8]

    Jin Z, Liu T T, Li W H, Zhang X M, Hou Z P, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2020 Phys. Rev. B 102 054419Google Scholar

    [9]

    Chen Z Y, Qin M H, Liu J M 2019 Phys. Rev. B 100 020402(RGoogle Scholar

    [10]

    Zhang Y L, Chen Z Y, Yan Z R, Chen D Y, Fan Z, Qin M H 2018 Appl. Phys. Lett. 113 112403Google Scholar

    [11]

    Selzer S, Atxitia U, Ritzmann U, Hinzke D, Nowak U 2016 Phys. Rev. Lett. 117 107201Google Scholar

    [12]

    Tveten E G, Qaiumzadeh A, Brataas A 2014 Phys. Rev. Lett. 112 147204Google Scholar

    [13]

    Jin Z, Meng C Y, Liu T T, Chen D Y, Fan Z, Zeng M, Lu X B, Gao X S, Qin M H, Liu J M 2021 Phys. Rev. B 104 054419Google Scholar

    [14]

    Zvezdin A K, Gareeva Z V, Zvezdin K A 2020 J. Magn. Magn. Mater. 509 166876Google Scholar

    [15]

    Li W H, Jin Z, Wen D L, Zhang X M, Qin M H, Liu J M 2020 Phys. Rev. B 101 024414Google Scholar

    [16]

    Kim K J, Kim S K, Hirata Y, Oh S H, Tono T, Kim D H, Okuno T, Ham W S, Kim S, Go G, Tserkovnyak Y, Tsukamoto A, Moriyama T, Lee K J, Ono T 2017 Nat. Mater. 16 1187Google Scholar

    [17]

    Oh S H, Kim S K, Xiao J, Lee K J 2019 Phys. Rev. B 100 174403Google Scholar

    [18]

    Caretta L, Mann M, Büttner F, Ueda K, Pfau B, Günther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154Google Scholar

    [19]

    Caretta L, Oh S H, Fakhrul T, Lee D K, Lee B H, Kim S K, Ross C A, Lee K J, Beach G S D 2020 Science. 370 1438Google Scholar

    [20]

    Sun C, Yang H, Jalil M B A 2020 Phys. Rev. B 102 134420Google Scholar

    [21]

    Yuan H Y, Cao Y, Kamra A, Duine R A, Yan P 2022 Phys. Rep. 965 1Google Scholar

    [22]

    Yu H, Xiao J, Schultheiss H 2021 Phys. Rep. 905 1Google Scholar

    [23]

    Oh S H, Kim S K, Lee D K, Go G, Kim K J, Ono T, Tserkovnyak Y, Lee K J 2017 Phys. Rev. B 96 100407(RGoogle Scholar

    [24]

    Martínez E, Raposo V, Alejos Ó 2019 J. Magn. Magn. Mater. 491 165545Google Scholar

    [25]

    Wang X G, Guo G H, Nie Y Z, Wang D W, Zeng Z M, Li Z X, Tang W 2014 Phys. Rev. B 89 144418Google Scholar

    [26]

    Chen Z Y, Yan Z R, Zhang Y L, Qin M H, Fan Z, Lu X B, Gao X S, Liu J M 2018 New J. Phys. 20 063003Google Scholar

    [27]

    Jin M, Hong I S, Kim D H, Lee K J, Kim S K 2021 Phys. Rev. B 104 184431Google Scholar

    [28]

    Liu T T, Hu Y F, Liu Y, Jin Z J Y, Tang Z H, Qin M H 2022 Rare Met. 41 3815Google Scholar

    [29]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmond K, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

  • [1] 赵晨蕊, 杨倩倩, 焦距, 唐政华, 秦明辉. 振荡磁场驱动亚铁磁畴壁动力学研究. 物理学报, 2025, 74(3): . doi: 10.7498/aps.74.20241033
    [2] 金哲珺雨, 曾钊卓, 曹云姗, 严鹏. 磁子霍尔效应. 物理学报, 2024, 73(1): 017501. doi: 10.7498/aps.73.20231589
    [3] 熊宜浓, 吴闯文, 任传童, 孟德全, 陈是位, 梁世恒. 基于二维磁性材料的自旋轨道力矩研究进展. 物理学报, 2024, 73(1): 017502. doi: 10.7498/aps.73.20231244
    [4] 夏永顺, 杨晓阔, 豆树清, 崔焕卿, 危波, 梁卜嘉, 闫旭. 基于磁性隧道结和双组分多铁纳磁体的超低功耗磁弹模数转换器. 物理学报, 2024, 73(13): 137502. doi: 10.7498/aps.73.20240129
    [5] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [6] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [7] 牛鹏斌, 罗洪刚. 马约拉纳费米子与杂质自旋相互作用的热偏压输运. 物理学报, 2021, 70(11): 117401. doi: 10.7498/aps.70.20202241
    [8] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [9] 夏静, 韩宗益, 宋怡凡, 江文婧, 林柳蓉, 张溪超, 刘小晰, 周艳. 磁斯格明子器件及其应用进展. 物理学报, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [10] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [11] 赵巍胜, 黄阳棋, 张学莹, 康旺, 雷娜, 张有光. 斯格明子电子学的研究进展. 物理学报, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [12] 张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友. 电学方法调控磁化翻转和磁畴壁运动的研究进展. 物理学报, 2017, 66(2): 027501. doi: 10.7498/aps.66.027501
    [13] 肖嘉星, 鲁军, 朱礼军, 赵建华. 垂直磁各向异性L10-Mn1.67Ga超薄膜分子束外延生长与磁性研究. 物理学报, 2016, 65(11): 118105. doi: 10.7498/aps.65.118105
    [14] 谷晓芳, 钱轩, 姬扬, 陈林, 赵建华. (Ga,Mn)As中电流诱导自旋极化的磁光Kerr测量. 物理学报, 2012, 61(3): 037801. doi: 10.7498/aps.61.037801
    [15] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应. 物理学报, 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [16] 任俊峰, 张玉滨, 解士杰. 铁磁/有机半导体/铁磁系统的电流自旋极化性质研究. 物理学报, 2007, 56(8): 4785-4790. doi: 10.7498/aps.56.4785
    [17] 任 敏, 张 磊, 胡九宁, 邓 宁, 陈培毅. 基于磁动力学方程的电流感应磁化翻转效应的宏观模型. 物理学报, 2007, 56(5): 2863-2867. doi: 10.7498/aps.56.2863
    [18] 任俊峰, 付吉永, 刘德胜, 解士杰. 自旋注入有机物的扩散理论. 物理学报, 2004, 53(11): 3814-3817. doi: 10.7498/aps.53.3814
    [19] 孙丰伟, 邓 莉, 寿 倩, 刘鲁宁, 文锦辉, 赖天树, 林位株. 量子阱中电子自旋注入及弛豫的飞秒光谱研究. 物理学报, 2004, 53(9): 3196-3199. doi: 10.7498/aps.53.3196
    [20] 秦建华, 郭 永, 陈信义, 顾秉林. 磁电垒结构中自旋极化输运性质的研究. 物理学报, 2003, 52(10): 2569-2575. doi: 10.7498/aps.52.2569
计量
  • 文章访问数:  2831
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 修回日期:  2023-07-12
  • 上网日期:  2023-07-22
  • 刊出日期:  2023-10-20

/

返回文章
返回