搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层间共价键和拉伸应变对双层石墨烯纳米带热导率的调控

李耀隆 李哲 李松远 张任良

引用本文:
Citation:

层间共价键和拉伸应变对双层石墨烯纳米带热导率的调控

李耀隆, 李哲, 李松远, 张任良

Regulation of thermal conductivity of bilayer graphene nanoribbon through interlayer covalent bond and tensile strain

Li Yao-Long, Li Zhe, Li Song-Yuan, Zhang Ren-Liang
PDF
HTML
导出引用
  • 石墨烯的层间键合是一种石墨烯的改性方式, 能够改变石墨烯的机械和导电等性能, 同时也会对其热学性质产生影响. 本文采用非平衡分子动力学方法, 以层间局部碳原子sp3杂化(层间形成共价键)的双层石墨烯纳米带为研究对象, 研究了层间共价键呈链状分布时, 其浓度、角度以及拉伸应变对双层石墨烯纳米带热导率的调控, 并通过声子态密度对具有层间共价键的双层石墨烯纳米带热导率变化的原因进行机理分析. 研究发现: 双层石墨烯纳米带的热导率随层间共价键浓度的增加而减小, 且依赖于共价键链的分布角度. 随着层间共价键浓度的增加, 层间共价键链与热流方向平行时, 双层石墨烯纳米带热导率下降的速率最慢, 层间共价键链与热流方向呈现一定角度时, 热导率下降的速率变快, 且角度越大, 热导率下降的速率越快. 此外研究还发现, 拉伸应变会导致具有层间共价键的双层石墨烯纳米带的热导率进一步降低. 研究结果表明, 可以通过层间键合和拉伸应变共同对双层石墨烯纳米带的热导率进行调控. 这些结论对石墨烯基纳米器件的设计及热管控具有重要的意义.
    The interlayer bonding of graphene is a method of modifying graphene, which can change the mechanical property and conductivity of graphene, but also affect its thermal properties. In this paper, the non-equilibrium molecular dynamics method is used to study the thermal conductivity of bilayer graphene nanoribbon which is local carbon sp3 hybridization (covalent bond formed between layers) under different concentration and angle of interlayer covalent bond chain and different tensile strain. The mechanism of the change of the thermal conductivity of bilayer graphene nanoribbon is analyzed through the density of phonon states. The results are as follows. The thermal conductivity of bilayer graphene nanoribbon decreases with the increase of the interlayer covalent bond concentration due to the intensification of phonon scattering and the reduction of phonon group velocities and effective phonon mean free path. Moreover, the decrease rate of thermal conductivity depends on the distribution angle of covalent bond chain. With the increase of interlayer covalent bond concentration, when the interlayer covalent bond chain is parallel to the direction of heat flow, the thermal conductivity decreases slowest because the heat transfer channel along the heat flow direction is gradually affected; when the interlayer covalent bond chain is at an angle with respect to the direction of heat flow, the thermal conductivity decreases more rapidly, and the larger the angle, the faster the thermal conductivity decreases. The rapid decline of thermal conductivity is due to the formation of interfacial thermal resistance at the interlayer covalent bond chain, where strong phonon-interface scattering occurs. In addition, it is found that the thermal conductivity of bilayer graphene nanoribbon with interlayer bonding will be further reduced by tensile strain due to the intensification of phonon scattering and the reduction of phonon group velocity. The results show that the thermal conductivity of bilayer graphene nanoribbon can be controlled by interlayer bonding and tensile strain. These conclusions are of great significance in designing and thermally controlling of graphene based nanodevices.
      通信作者: 张任良, zhrleo@ysu.edu.cn
    • 基金项目: 燕山大学青年教师自主研究计划(批准号: 020000534)和燕山大学博士基金(批准号: B919)资助的课题.
      Corresponding author: Zhang Ren-Liang, zhrleo@ysu.edu.cn
    • Funds: Project supported by the Young Teachers Independent Research Projects of Yanshan University, China (Grant No. 020000534) and the Doctoral Fund of Yanshan University, China (Grant No. B919).
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    King A, Johnson G, Engelberg D, Ludwig W, Marrow J 2008 Science 321 382Google Scholar

    [3]

    Novoselov K S, Morozov S V, Mohinddin T M G, Ponomarenko L A, Elias D C, Yang R, Barbolina I I, Blake P, Booth T J, Jiang D, Giesbers J, Hill E W, Geim A K 2007 Phys. Status Solidi B 244 4106Google Scholar

    [4]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [6]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [7]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [8]

    Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103Google Scholar

    [9]

    Xu Y, Chen X, Gu B, Duan W 2009 Appl. Phys. Lett. 95 233116Google Scholar

    [10]

    Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730Google Scholar

    [11]

    Kong B D, Paul S, Nardelli M B, Kim K W 2009 Phys. Rev. B 80 033406Google Scholar

    [12]

    Cao H, Guo Z, Xiang H, Gong X 2012 Phys. Lett. A 376 525Google Scholar

    [13]

    Chien S, Yang Y, Chen C O 2011 Appl. Phys. Lett. 98 33107Google Scholar

    [14]

    Pei Q, Sha Z, Zhang Y 2011 Carbon 49 4752Google Scholar

    [15]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 物理学报 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [16]

    Morpurgo A F, Vandersypen L M K, Oostinga J B, Heersche H B, Liu X 2008 Nat. Mater. 7 151Google Scholar

    [17]

    Deng C C, Huang Y W, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [18]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [19]

    Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [20]

    Wei Z, Ni Z, Bi K, Chen M, Chen Y 2011 Carbon 49 2653Google Scholar

    [21]

    Yu X X, Ma D K, Deng C C, Wan X, An M, Meng H, Li X B, Huang X M, Yang N 2021 Chin. Phys. Lett. 38 014401Google Scholar

    [22]

    Li Z, Wang Y, Ma M, Ma H, Hu W, Zhang X, Zhuge Z, Zhang S, Luo K, Gao Y, Sun L, Soldatov A V, Wu Y, Liu B, Li B, Ying P, Zhang Y, Xu B, He J, Yu D, Liu Z, Zhao Z, Yue Y, Tian Y, Li X 2023 Nat. Mater. 22 42Google Scholar

    [23]

    Peng B, Locascio M, Zapol P, Li S, Mielke S L, Schatz G C, Espinosa H D 2008 Nat. Nanotechnol. 3 626Google Scholar

    [24]

    Kanasaki J, Inami E, Tanimura K, Ohnishi H, Nasu K 2009 Phys. Rev. Lett. 102 87402Google Scholar

    [25]

    Kvashnin A G, Chernozatonskii L A, Yakobson B I, Sorokin P B 2014 Nano Lett. 14 676Google Scholar

    [26]

    Rajabpour A, Vaez Allaei S M 2012 Appl. Phys. Lett. 101 53115Google Scholar

    [27]

    Guo T, Sha Z, Liu X, Zhang G, Guo T, Pei Q, Zhang Y 2015 Appl. Phys. A 120 1275Google Scholar

    [28]

    Yang L, Wan X, Ma D K, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [29]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 物理学报 72 034401Google Scholar

    Song Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [30]

    Chen Y, Wan J, Chen Y, Qin H, Liu Y, Pei Q, Zhang Y 2023 Int. J. Therm. Sci. 183 107871Google Scholar

    [31]

    Fan L, Yao W 2021 Diamond Relat. Mater. 118 108521Google Scholar

    [32]

    Huang Y W, Feng W T, Yu X X, Deng C C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar

    [33]

    Feng W T, Yu X X, Wang Y, Ma D K, Sun Z J, Deng C C, Yang N 2019 Phys. Chem. Chem. Phys. 21 25072Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [36]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104Google Scholar

    [37]

    Xu X F, Pereira L F C, Wang Y, Wu J, Zhang K W, Zhao X M, Bae S, Tinh Bui C T, Xie R G, Thong J T L, Hong B H, Loh K P, Donadio D, Li B W, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [38]

    Hao F, Fang D, Xu Z 2011 Appl. Phys. Lett. 99 041901Google Scholar

    [39]

    Wei N, Xu L, Wang H, Zheng J 2011 Nanotechnology 22 105705Google Scholar

    [40]

    Polanco C A, Lindsay L 2018 Phys. Rev. B 98 014306Google Scholar

    [41]

    Dong L, Wu X S, Hu Y, Xu X F, Bao H 2021 Chin. Phys. Lett. 38 027202Google Scholar

    [42]

    Zhu G P, Zhao C W, Wang X W, Wang J 2021 Chin. Phys. Lett. 38 024401Google Scholar

    [43]

    Guo Z, Zhang D, Gong X 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [44]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [45]

    Xu K, Deng S C, Liang T, Cao X Z, Han M, Zeng X L, Zhang Z S, Yang N, Wu J Y 2022 Nanoscale 14 3078Google Scholar

    [46]

    Wang X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transfer 180 121821Google Scholar

    [47]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433Google Scholar

  • 图 1  (a) 非平衡分子动力学模拟模型图; (b) 模型侧视图; (c) 模型的局部放大图

    Fig. 1.  (a) Model diagram of non- equilibrium molecular dynamics simulation; (b) model side view; (c) model partial enlarged view.

    图 2  模拟系统的温度沿X方向分布

    Fig. 2.  Distribution of temperature in the X-direction of the simulation system.

    图 3  不同层间共价键浓度的模型图 (a) 层间共价键浓度为2.08%; (b) 层间共价键浓度为4.16%; (c) 层间共价键浓度为8.33%; (d) 层间共价键浓度为12.5%

    Fig. 3.  Snapshot of model diagram of different interlayer covalent bond concentration: (a) interlayer covalent bond concentration of 2.08%; (b) interlayer covalent bond concentration of 4.16%; (c) interlayer covalent bond concentration of 8.33%; (d) interlayer covalent bond concentration of 12.5%

    图 4  层间共价键浓度对热导率的影响

    Fig. 4.  Influence of interlayer covalent bond concentration on thermal conductivity.

    图 5  (a) 不同层间共价键浓度的双层石墨烯的面内PDOS; (b) 不同层间共价键浓度的双层石墨烯的面外PDOS; (c) 相同模型共价键区域和非共价键区域的面内PDOS; (d) 相同模型共价键区域和非共价键区域的面外PDOS

    Fig. 5.  (a) In-plane PDOS of bilayer graphene with different interlayer covalent concentration; (b) the out-plane PDOS of bilayer graphene with different interlayer covalent concentration; (c) the in-plane PDOS of covalent and noncovalent bond regions in the same model; (d) the in-plane PDOS of covalent and noncovalent bond regions in the same model.

    图 6  层间共价键链呈不同角度时的模型图 (a) 层间共价键链呈0°; (b) 层间共价键链呈30°; (c) 层间共价键链呈60°; (d) 层间共价键链呈90°

    Fig. 6.  Snapshot of model diagram of interlayer covalent bond chain at different angles: (a) 0° interlayer covalent bond chain; (b) 30° interlayer covalent bond chain; (c) 60° interlayer covalent bond chain; (d) 90° interlayer covalent bond chain

    图 7  层间共价键链的角度以及浓度对热导率的影响

    Fig. 7.  Influences of the angle and concentration of the covalent bond chain on thermal conductivity.

    图 8  (a) 不同的层间共价键浓度下应变对热导率的影响; (b) 不同层间共价键链角度下应变对热导率的影响

    Fig. 8.  (a) Influence of strain on thermal conductivity with different interlayer covalent bond concentrations; (b) influence of strain on thermal conductivity with different interlayer covalent bond chain angle.

    图 9  不同拉伸应变下具有层间共价键的双层石墨烯的面内声子态密度 (a) 层间共价键浓度为2.08%; (b) 层间共价键浓度为4.16%; (c) 层间共价键浓度为8.33%; (d) 层间共价键浓度为12.5%

    Fig. 9.  In-plane PDOS of bilayer graphene with interlayer covalent bonds under different tensile strains: (a) Interlayer covalent bond concentration of 2.08%; (b) interlayer covalent bond concentration of 4.16%; (c) interlayer covalent bond concentration of 8.33%; (d) interlayer covalent bond concentration 12.5% interlayer covalent bond concentration.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    King A, Johnson G, Engelberg D, Ludwig W, Marrow J 2008 Science 321 382Google Scholar

    [3]

    Novoselov K S, Morozov S V, Mohinddin T M G, Ponomarenko L A, Elias D C, Yang R, Barbolina I I, Blake P, Booth T J, Jiang D, Giesbers J, Hill E W, Geim A K 2007 Phys. Status Solidi B 244 4106Google Scholar

    [4]

    Pop E, Varshney V, Roy A K 2012 MRS Bull. 37 1273Google Scholar

    [5]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [6]

    Wu T, Zhang X, Yuan Q, Xue J, Lu G, Liu Z, Wang H, Wang H, Ding F, Yu Q, Xie X, Jiang M 2016 Nat. Mater. 15 43Google Scholar

    [7]

    Ghosh S, Calizo I, Teweldebrhan D, Pokatilov E P, Nika D L, Balandin A A, Bao W, Miao F, Lau C N 2008 Appl. Phys. Lett. 92 151911Google Scholar

    [8]

    Nika D L, Ghosh S, Pokatilov E P, Balandin A A 2009 Appl. Phys. Lett. 94 203103Google Scholar

    [9]

    Xu Y, Chen X, Gu B, Duan W 2009 Appl. Phys. Lett. 95 233116Google Scholar

    [10]

    Hu J, Ruan X, Chen Y P 2009 Nano Lett. 9 2730Google Scholar

    [11]

    Kong B D, Paul S, Nardelli M B, Kim K W 2009 Phys. Rev. B 80 033406Google Scholar

    [12]

    Cao H, Guo Z, Xiang H, Gong X 2012 Phys. Lett. A 376 525Google Scholar

    [13]

    Chien S, Yang Y, Chen C O 2011 Appl. Phys. Lett. 98 33107Google Scholar

    [14]

    Pei Q, Sha Z, Zhang Y 2011 Carbon 49 4752Google Scholar

    [15]

    杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟 2012 物理学报 61 076501Google Scholar

    Yang P, Wang X L, Li P, Wang H, Zhang L Q, Xie F W 2012 Acta Phys. Sin. 61 076501Google Scholar

    [16]

    Morpurgo A F, Vandersypen L M K, Oostinga J B, Heersche H B, Liu X 2008 Nat. Mater. 7 151Google Scholar

    [17]

    Deng C C, Huang Y W, An M, Yang N 2021 Mater. Today Phys. 16 100305Google Scholar

    [18]

    潘东楷, 宗志成, 杨诺 2022 物理学报 71 086302Google Scholar

    Pan D K, Zong Z C, Yang N 2022 Acta Phys. Sin. 71 086302Google Scholar

    [19]

    Ghosh S, Bao W, Nika D L, Subrina S, Pokatilov E P, Lau C N, Balandin A A 2010 Nat. Mater. 9 555Google Scholar

    [20]

    Wei Z, Ni Z, Bi K, Chen M, Chen Y 2011 Carbon 49 2653Google Scholar

    [21]

    Yu X X, Ma D K, Deng C C, Wan X, An M, Meng H, Li X B, Huang X M, Yang N 2021 Chin. Phys. Lett. 38 014401Google Scholar

    [22]

    Li Z, Wang Y, Ma M, Ma H, Hu W, Zhang X, Zhuge Z, Zhang S, Luo K, Gao Y, Sun L, Soldatov A V, Wu Y, Liu B, Li B, Ying P, Zhang Y, Xu B, He J, Yu D, Liu Z, Zhao Z, Yue Y, Tian Y, Li X 2023 Nat. Mater. 22 42Google Scholar

    [23]

    Peng B, Locascio M, Zapol P, Li S, Mielke S L, Schatz G C, Espinosa H D 2008 Nat. Nanotechnol. 3 626Google Scholar

    [24]

    Kanasaki J, Inami E, Tanimura K, Ohnishi H, Nasu K 2009 Phys. Rev. Lett. 102 87402Google Scholar

    [25]

    Kvashnin A G, Chernozatonskii L A, Yakobson B I, Sorokin P B 2014 Nano Lett. 14 676Google Scholar

    [26]

    Rajabpour A, Vaez Allaei S M 2012 Appl. Phys. Lett. 101 53115Google Scholar

    [27]

    Guo T, Sha Z, Liu X, Zhang G, Guo T, Pei Q, Zhang Y 2015 Appl. Phys. A 120 1275Google Scholar

    [28]

    Yang L, Wan X, Ma D K, Jiang Y, Yang N 2021 Phys. Rev. B 103 155305Google Scholar

    [29]

    宗志成, 潘东楷, 邓世琛, 万骁, 杨哩娜, 马登科, 杨诺 2023 物理学报 72 034401Google Scholar

    Song Z C, Pan D K, Deng S C, Wan X, Yang L N, Ma D K, Yang N 2023 Acta Phys. Sin. 72 034401Google Scholar

    [30]

    Chen Y, Wan J, Chen Y, Qin H, Liu Y, Pei Q, Zhang Y 2023 Int. J. Therm. Sci. 183 107871Google Scholar

    [31]

    Fan L, Yao W 2021 Diamond Relat. Mater. 118 108521Google Scholar

    [32]

    Huang Y W, Feng W T, Yu X X, Deng C C, Yang N 2020 Chin. Phys. B 29 126303Google Scholar

    [33]

    Feng W T, Yu X X, Wang Y, Ma D K, Sun Z J, Deng C C, Yang N 2019 Phys. Chem. Chem. Phys. 21 25072Google Scholar

    [34]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [35]

    Stuart S J, Tutein A B, Harrison J A 2000 J. Chem. Phys. 112 6472Google Scholar

    [36]

    Girifalco L A, Hodak M, Lee R S 2000 Phys. Rev. B 62 13104Google Scholar

    [37]

    Xu X F, Pereira L F C, Wang Y, Wu J, Zhang K W, Zhao X M, Bae S, Tinh Bui C T, Xie R G, Thong J T L, Hong B H, Loh K P, Donadio D, Li B W, Ozyilmaz B 2014 Nat. Commun. 5 3689Google Scholar

    [38]

    Hao F, Fang D, Xu Z 2011 Appl. Phys. Lett. 99 041901Google Scholar

    [39]

    Wei N, Xu L, Wang H, Zheng J 2011 Nanotechnology 22 105705Google Scholar

    [40]

    Polanco C A, Lindsay L 2018 Phys. Rev. B 98 014306Google Scholar

    [41]

    Dong L, Wu X S, Hu Y, Xu X F, Bao H 2021 Chin. Phys. Lett. 38 027202Google Scholar

    [42]

    Zhu G P, Zhao C W, Wang X W, Wang J 2021 Chin. Phys. Lett. 38 024401Google Scholar

    [43]

    Guo Z, Zhang D, Gong X 2009 Appl. Phys. Lett. 95 163103Google Scholar

    [44]

    Meng H, Maruyama S G, Xiang R, Yang N 2021 Int. J. Heat Mass Transfer 180 121773Google Scholar

    [45]

    Xu K, Deng S C, Liang T, Cao X Z, Han M, Zeng X L, Zhang Z S, Yang N, Wu J Y 2022 Nanoscale 14 3078Google Scholar

    [46]

    Wang X, Demir B, An M, Walsh T R, Yang N 2021 Int. J. Heat Mass Transfer 180 121821Google Scholar

    [47]

    Mohiuddin T M G, Lombardo A, Nair R R, Bonetti A, Savini G, Jalil R, Bonini N, Basko D M, Galiotis C, Marzari N, Novoselov K S, Geim A K, Ferrari A C 2009 Phys. Rev. B 79 205433Google Scholar

  • [1] 余欣秀, 李多生, 叶寅, 朗文昌, 刘俊红, 陈劲松, 于爽爽. 硬质合金表面镍过渡层对碳原子沉积与石墨烯生长影响的分子动力学模拟. 物理学报, 2024, 73(23): 238701. doi: 10.7498/aps.73.20241170
    [2] 刘秀成, 杨智, 郭浩, 陈颖, 罗向龙, 陈健勇. 金刚石/环氧树脂复合物热导率的分子动力学模拟. 物理学报, 2023, 72(16): 168102. doi: 10.7498/aps.72.20222270
    [3] 李婷, 毕晓月, 孔婧文. 剪切形变下磷烯的力学和热学性能. 物理学报, 2023, 72(12): 126201. doi: 10.7498/aps.72.20230084
    [4] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2022, 71(5): 056101. doi: 10.7498/aps.71.20211857
    [5] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [6] 郑翠红, 杨剑, 谢国锋, 周五星, 欧阳滔. 离子辐照对磷烯热导率的影响及其机制分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211857
    [7] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [8] 徐文雪, 梁新刚, 徐向华, 祝渊. 交联对硅橡胶热导率影响的分子动力学模拟. 物理学报, 2020, 69(19): 196601. doi: 10.7498/aps.69.20200737
    [9] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性. 物理学报, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [10] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [11] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [12] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [13] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉. 硅功能化石墨烯热导率的分子动力学模拟. 物理学报, 2014, 63(7): 074401. doi: 10.7498/aps.63.074401
    [14] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [15] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [16] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [17] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [18] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [19] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
    [20] 保文星, 朱长纯. 碳纳米管热传导的分子动力学模拟研究. 物理学报, 2006, 55(7): 3552-3557. doi: 10.7498/aps.55.3552
计量
  • 文章访问数:  2582
  • PDF下载量:  154
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-28
  • 修回日期:  2023-08-27
  • 上网日期:  2023-09-20
  • 刊出日期:  2023-12-20

/

返回文章
返回