搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例

曾启昱 陈博 康冬冬 戴佳钰

引用本文:
Citation:

大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例

曾启昱, 陈博, 康冬冬, 戴佳钰

Large scale and quantum accurate molecular dynamics simulation: Liquid iron under extreme condition

Zeng Qi-Yu, Chen Bo, Kang Dong-Dong, Dai Jia-Yu
PDF
HTML
导出引用
  • 液态铁作为类地行星内核的主要组成成分, 其在高温高压条件下的热力学、输运及动力学性质研究, 对理解行星演化有着重要意义. 极端条件物态物性在实验条件下产生困难且诊断手段有限, 而理论模拟在动力学、输运性质计算方面面临着规模、精度的双重要求, 极大限制了这方面的有效进展. 本文结合深度学习技术, 通过神经网络构造液态铁的高维相互作用势能面, 在保证第一性原理计算精度的前提下, 将计算规模从数百原子扩展到数十万原子体系. 研究了从常压到核幔边界条件下液态铁的动力学及输运性质, 并与X射线衍射、非弹性X射线散射实验对比, 二者的一致性指出, 深度学习技术与分子模拟的结合为我们高通量研究极端条件下真实体系的物态物性及动力学提供了有效手段.
    Liquid iron is the major component of planetary cores. Its structure and dynamics under high pressure and temperature is of great significance in studying geophysics and planetary science. However, for experimental techniques, it is still difficult to generate and probe such a state of matter under extreme conditions, while for theoretical method like molecular dynamics simulation, the reliable estimation of dynamic properties requires both large simulation size and ab initio accuracy, resulting in unaffordable computational costs for traditional method. Owing to the technical limitation, the understanding of such matters remains limited. In this work, combining molecular dynamics simulation, we establish a neural network potential energy surface model to study the static and dynamic properties of liquid iron at its extreme thermodynamic state close to core-mantle boundary. The implementation of deep neural network extends the simulation scales from one hundred atoms to millions of atoms within quantum accuracy. The estimated static and dynamic structure factor show good consistency with all available X-ray diffraction and inelastic X-ray scattering experimental observations, while the empirical potential based on embedding-atom-method fails to give a unified description of liquid iron across a wide range of thermodynamic conditions. We also demonstrate that the transport property like diffusion coefficient exhibits a strong size effect, which requires more than at least ten thousands of atoms to give a converged value. Our results show that the combination of deep learning technology and molecular modelling provides a way to describe matter realistically under extreme conditions.
      通信作者: 康冬冬, ddkang@nudt.edu.cn ; 戴佳钰, jydai@nudt.edu.cn
    • 基金项目: NSAF联合基金(批准号: U1830206)、国家自然科学基金(批准号: 11874424, 12104507)和湖南省科技创新领军人才项目(批准号: 2021RC4026)资助的课题.
      Corresponding author: Kang Dong-Dong, ddkang@nudt.edu.cn ; Dai Jia-Yu, jydai@nudt.edu.cn
    • Funds: Project supported by the NSAF Joint Fund (Grant No. U1830206), the National Natural Science Foundation of China (Grant Nos. 11874424, 12104507), and the Science and Technology Innovation Program of Hunan Province, China (Grant No. 2021RC4026).
    [1]

    Vočadlo L 2015 Treatise on Geophysics 2.06—Earth’s Core: Iron and Iron Alloys (Amsterdam: Elsevier) pp117–147

    [2]

    Dziewonski A M, Anderson D L 1981 Phys. Earth Planet. Inter. 25 297Google Scholar

    [3]

    Wagner F W, Sohl F, Hussmann H, Grott M, Rauer H 2011 Icarus 214 366Google Scholar

    [4]

    Dai J, Kang D, Zhao Z, Wu Y, Yuan J 2012 Phys. Rev. Lett. 109 175701Google Scholar

    [5]

    Dai J, Hou Y, Kang D, Sun H, Wu J, Yuan J 2013 New J. Phys. 15 045003Google Scholar

    [6]

    Li Q, Sun T, Zhang Y G, Xian J W, Vocadlo L 2021 J. Chem. Phys. 155 194505Google Scholar

    [7]

    González L E, González D J 2023 J. Geophys. Res. Solid Earth 128 e2022JB025119Google Scholar

    [8]

    Ramakrishna K, Lokamani M, Baczewski A, Vorberger J, Cangi A 2023 Phys. Rev. B 107 115131Google Scholar

    [9]

    Kang D, Zeng Q, Zhang S, Wang X, Dai J 2020 High Power Laser Part. Beams 32 092006Google Scholar

    [10]

    Behler J, Parrinello M 2007 Phys. Rev. Lett. 98 146401Google Scholar

    [11]

    Bartok A P, Payne M C, Kondor R, Csanyi G 2010 Phys. Rev. Lett. 104 136403Google Scholar

    [12]

    Thompson A P, Swiler L P, Trott C R, Foiles S M, Tucker G J 2015 J. Comput. Phys. 285 316Google Scholar

    [13]

    Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [14]

    Zhang L 2018 arXiv: 180509003 [physics.comp-ph

    [15]

    Zhang Y, Gao C, Liu Q, Zhang L, Wang H, Chen M 2020 Phys. Plasmas 27 122704Google Scholar

    [16]

    Chen X, Gao X, Zhao Y, Lin D, Chu W, Song H 2020 Comput. Phys. Commun. 250 107057Google Scholar

    [17]

    Zeng Q, Yu X, Yao Y, Gao T, Chen B, Zhang S, Kang D, Wang H, Dai J 2021 Phys. Rev. Research 3 033116Google Scholar

    [18]

    Chen B, Zeng Q, Wang H, Zhang S, Kang D, Lu D, Dai J 2021 arXiv: 200613136 [cond-mat.mtrl-sci

    [19]

    Chen B, Zeng Q, Yu X, Chen J, Zhang S, Kang D, Dai J 2022 arXiv: 220801830 [astro-ph.EP

    [20]

    Yang F, Zeng Q, Chen B, Kang D, Zhang S, Wu J, Yu X, Dai J 2022 Chin. Phys. Lett. 39 116301Google Scholar

    [21]

    Zeng Q, Chen B, Zhang S, Kang D, Wang H, Yu X, Dai J 2023 arXiv: 230813863 [physics.comp-ph

    [22]

    Hosokawa S, Inui M, Matsuda K, Ishikawa D, Baron A Q R 2008 Phys. Rev. B 77 174203Google Scholar

    [23]

    Kuwayama Y, Morard G, Nakajima Y, Hirose K, Baron A Q R, Kawaguchi S I, Tsuchiya T, Ishikawa D, Hirao N, Ohishi Y 2020 Phys. Rev. Lett. 124 165701Google Scholar

    [24]

    Inui M, Maruyama K, Kajihara Y, Nakada M 2009 Phys. Rev. B 80 180201(RGoogle Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 16Google Scholar

    [26]

    Morard G, Boccato S, Rosa A D, Anzellini S, Miozzi F, Henry L, Garbarino G, Mezouar M, Harmand M, Guyot F, Boulard E, Kantor I, Irifune T, Torchio R 2018 Geophys. Res. Lett. 45 2018GL079950Google Scholar

    [27]

    Perdew J, Burke J, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Holzwarth N, Tackett A, Matthews G 2001 Comput. Phys. Commun. 135 3Google Scholar

    [29]

    Marqués M, González L E, González D J 2015 Phys. Rev. B 92 134203Google Scholar

    [30]

    Marqués M, González L E, González D J 2016 J. Phys. Condens. Matter 28 075101Google Scholar

    [31]

    Wang H, Zhang L, Han J, E W 2018 Comput. Phys. Commun. 228 178Google Scholar

    [32]

    Zeng J, Zhang D, Lu D, Mo P, Li Z, Chen Y, Rynik M, Huang L, Li Z, Shi S, Wang Y, Ye H, Tuo P, Yang J, Ding Y, Li Y, Tisi D, Zeng Q, Bao H, Xia Y, Huang J, Muraoka K, Wang Y, Chang J, Yuan F, Bore S L, Cai C, Lin Y, Wang B, Xu J, Zhu J X, Luo C, Zhang Y, Goodall R E A, Liang W, Singh A K, Yao S, Zhang J, Wentzcovitch R, Han J, Liu J, Jia W, York D M, E W, Car R, Zhang L, Wang H 2023 J. Chem. Phys. 159 054801Google Scholar

    [33]

    Sun Y, Zhang F, Mendelev M I, Wentzcovitch R M, Ho K M 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2113059119Google Scholar

  • 图 1  液态铁的训练集采样示意图, 紫色空心圆圈表示在该(p, T)条件下采样的液态结构, 黑色实线为Morard等[26]确定的相边界

    Fig. 1.  Atomic configurations sampling in P-T space, where the black solid line denotes the experimental measured phase boundaries by Morard et al[26]

    图 2  液态铁的能量、受力与压强在训练集上的预测偏差 (a) $ \sigma_{E}=7.36\; {\rm meV/atom}$; (b) $ \sigma_{f} = 0.36\; {\rm eV/\AA}$; (c) $ \sigma_{p} = 0.41\; {\rm GPa}$

    Fig. 2.  DP-predicted energy per atom, force, and pressures versus the true KS-DFT calculations in the testing dataset: (a) $ \sigma_{E}= $$ 7.36\; {\rm meV/atom} $; (b) $ \sigma_{f}=0.36\; {\rm eV/\AA} $; (c) $ \sigma_{p}=0.41\; {\rm GPa} $

    图 3  液态铁的静态结构因子 (a) p = 0 GPa, T = 1873 K; (b) p = 21 GPa, T = 2600 K; (c) p = 40 GPa, T = 3000 K; (d) p = 53 GPa, T = 3300 K; (e) p = 74 GPa, T = 3600 K; (f) p = 106 GPa, T = 4250 K; 彩色点为DPMD计算结果, 灰色点为Inui等[24](常压)和Kuwayama等[23] (高温高压)的实验测量结果, 灰色虚线为基于EAM势的CMD计算结果

    Fig. 3.  Static structure factor of liquid iron: (a) p = 0 GPa, T = 1873 K; (b) p = 21 GPa, T = 2600 K; (c) p = 40 GPa, T = 3000 K; (d) p = 53 GPa, T = 3300 K; (e) p = 74 GPa, T = 3600 K; (f) p = 106 GPa, T = 4250 K. Colored circles indicate the results from DPMD simulation, the gray square denotes the experimental measurements by Inui et al.[24] and Kuwayaka et al.[23], the gray dashed line denotes the results from CMD simulation with EAM potential

    图 4  (a)常压和(b)核幔边界条件下液态铁的动态结构因子, 彩色实线为DPMD计算结果, 黑色圆圈为Hosokawa等[22]的非弹性X射线散射实验测量结果, 黑色虚线为基于Sun等[33]开发的EAM势计算的结果

    Fig. 4.  Dynamic structure factor of liquid iron under (a) ambient pressure condition and (b) core-mantle boundary condition. Colored lines indicate the results from DPMD simulation, the black circles denote the experimental measurements by Hosokawa et al.[22], the black dashed lines denote the CMD simulation with EAM potential developed by Sun et al[33]

    图 5  液态铁的扩散系数 (a) p = 0 GPa, T = 1873 K; (b) p = 96 GPa, T = 3800 K; 彩色点为DPMD计算结果, 实线为线性关系的拟合结果, 黑色三角为González等[7]的AIMD计算结果

    Fig. 5.  Self-dissufion coefficient of liquid iron: (a) p = 0 GPa, T = 1873 K; (b) p = 96 GPa, T = 3800 K. Colored circles denote the results from DPMD simulation, colored solid lines denote the fitting curve for removal of size effect, and the balck triangle denotes the previous AIMD calcualtion by González et al[7]

  • [1]

    Vočadlo L 2015 Treatise on Geophysics 2.06—Earth’s Core: Iron and Iron Alloys (Amsterdam: Elsevier) pp117–147

    [2]

    Dziewonski A M, Anderson D L 1981 Phys. Earth Planet. Inter. 25 297Google Scholar

    [3]

    Wagner F W, Sohl F, Hussmann H, Grott M, Rauer H 2011 Icarus 214 366Google Scholar

    [4]

    Dai J, Kang D, Zhao Z, Wu Y, Yuan J 2012 Phys. Rev. Lett. 109 175701Google Scholar

    [5]

    Dai J, Hou Y, Kang D, Sun H, Wu J, Yuan J 2013 New J. Phys. 15 045003Google Scholar

    [6]

    Li Q, Sun T, Zhang Y G, Xian J W, Vocadlo L 2021 J. Chem. Phys. 155 194505Google Scholar

    [7]

    González L E, González D J 2023 J. Geophys. Res. Solid Earth 128 e2022JB025119Google Scholar

    [8]

    Ramakrishna K, Lokamani M, Baczewski A, Vorberger J, Cangi A 2023 Phys. Rev. B 107 115131Google Scholar

    [9]

    Kang D, Zeng Q, Zhang S, Wang X, Dai J 2020 High Power Laser Part. Beams 32 092006Google Scholar

    [10]

    Behler J, Parrinello M 2007 Phys. Rev. Lett. 98 146401Google Scholar

    [11]

    Bartok A P, Payne M C, Kondor R, Csanyi G 2010 Phys. Rev. Lett. 104 136403Google Scholar

    [12]

    Thompson A P, Swiler L P, Trott C R, Foiles S M, Tucker G J 2015 J. Comput. Phys. 285 316Google Scholar

    [13]

    Zhang L, Han J, Wang H, Car R, E W 2018 Phys. Rev. Lett. 120 143001Google Scholar

    [14]

    Zhang L 2018 arXiv: 180509003 [physics.comp-ph

    [15]

    Zhang Y, Gao C, Liu Q, Zhang L, Wang H, Chen M 2020 Phys. Plasmas 27 122704Google Scholar

    [16]

    Chen X, Gao X, Zhao Y, Lin D, Chu W, Song H 2020 Comput. Phys. Commun. 250 107057Google Scholar

    [17]

    Zeng Q, Yu X, Yao Y, Gao T, Chen B, Zhang S, Kang D, Wang H, Dai J 2021 Phys. Rev. Research 3 033116Google Scholar

    [18]

    Chen B, Zeng Q, Wang H, Zhang S, Kang D, Lu D, Dai J 2021 arXiv: 200613136 [cond-mat.mtrl-sci

    [19]

    Chen B, Zeng Q, Yu X, Chen J, Zhang S, Kang D, Dai J 2022 arXiv: 220801830 [astro-ph.EP

    [20]

    Yang F, Zeng Q, Chen B, Kang D, Zhang S, Wu J, Yu X, Dai J 2022 Chin. Phys. Lett. 39 116301Google Scholar

    [21]

    Zeng Q, Chen B, Zhang S, Kang D, Wang H, Yu X, Dai J 2023 arXiv: 230813863 [physics.comp-ph

    [22]

    Hosokawa S, Inui M, Matsuda K, Ishikawa D, Baron A Q R 2008 Phys. Rev. B 77 174203Google Scholar

    [23]

    Kuwayama Y, Morard G, Nakajima Y, Hirose K, Baron A Q R, Kawaguchi S I, Tsuchiya T, Ishikawa D, Hirao N, Ohishi Y 2020 Phys. Rev. Lett. 124 165701Google Scholar

    [24]

    Inui M, Maruyama K, Kajihara Y, Nakada M 2009 Phys. Rev. B 80 180201(RGoogle Scholar

    [25]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 16Google Scholar

    [26]

    Morard G, Boccato S, Rosa A D, Anzellini S, Miozzi F, Henry L, Garbarino G, Mezouar M, Harmand M, Guyot F, Boulard E, Kantor I, Irifune T, Torchio R 2018 Geophys. Res. Lett. 45 2018GL079950Google Scholar

    [27]

    Perdew J, Burke J, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [28]

    Holzwarth N, Tackett A, Matthews G 2001 Comput. Phys. Commun. 135 3Google Scholar

    [29]

    Marqués M, González L E, González D J 2015 Phys. Rev. B 92 134203Google Scholar

    [30]

    Marqués M, González L E, González D J 2016 J. Phys. Condens. Matter 28 075101Google Scholar

    [31]

    Wang H, Zhang L, Han J, E W 2018 Comput. Phys. Commun. 228 178Google Scholar

    [32]

    Zeng J, Zhang D, Lu D, Mo P, Li Z, Chen Y, Rynik M, Huang L, Li Z, Shi S, Wang Y, Ye H, Tuo P, Yang J, Ding Y, Li Y, Tisi D, Zeng Q, Bao H, Xia Y, Huang J, Muraoka K, Wang Y, Chang J, Yuan F, Bore S L, Cai C, Lin Y, Wang B, Xu J, Zhu J X, Luo C, Zhang Y, Goodall R E A, Liang W, Singh A K, Yao S, Zhang J, Wentzcovitch R, Han J, Liu J, Jia W, York D M, E W, Car R, Zhang L, Wang H 2023 J. Chem. Phys. 159 054801Google Scholar

    [33]

    Sun Y, Zhang F, Mendelev M I, Wentzcovitch R M, Ho K M 2022 Proc. Natl. Acad. Sci. U.S.A. 119 e2113059119Google Scholar

  • [1] 宋天舒, 夏辉. 基于数值稳定型神经网络的Villain-Lai-Das Sarma方程的动力学标度行为研究. 物理学报, 2024, 73(16): 160501. doi: 10.7498/aps.73.20240852
    [2] 张宇航, 李孝宝, 詹春晓, 王美芹, 浦玉学. 单层MoSSe力学性质的分子动力学模拟研究. 物理学报, 2023, 72(4): 046201. doi: 10.7498/aps.72.20221815
    [3] 李瑞, 徐邦林, 周建芳, 姜恩华, 汪秉宏, 袁五届. 一种突触可塑性导致的觉醒-睡眠周期中突触强度变化和神经动力学转变. 物理学报, 2023, 72(24): 248706. doi: 10.7498/aps.72.20231037
    [4] 刘刚钦. 极端条件下的金刚石自旋量子传感. 物理学报, 2022, 71(6): 066101. doi: 10.7498/aps.71.20212072
    [5] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [6] 王鹏举, 范俊宇, 苏艳, 赵纪军. 基于机器学习构建的环三亚甲基三硝胺晶体势. 物理学报, 2020, 69(23): 238702. doi: 10.7498/aps.69.20200690
    [7] 孙立望, 李洪, 汪鹏君, 高和蓓, 罗孟波. 利用神经网络识别高分子链在表面的吸附相变. 物理学报, 2019, 68(20): 200701. doi: 10.7498/aps.68.20190643
    [8] 董琪琪, 胡海豹, 陈少强, 何强, 鲍路瑶. 水滴撞击结冰过程的分子动力学模拟. 物理学报, 2018, 67(5): 054702. doi: 10.7498/aps.67.20172174
    [9] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [10] 邱超, 张会臣. 正则系综条件下空化空泡形成的分子动力学模拟. 物理学报, 2015, 64(3): 033401. doi: 10.7498/aps.64.033401
    [11] 常旭. 多层石墨烯的表面起伏的分子动力学模拟. 物理学报, 2014, 63(8): 086102. doi: 10.7498/aps.63.086102
    [12] 杨毅, 唐刚, 宋丽建, 寻之朋, 夏辉, 郝大鹏. 分形基底上受限固-固模型动力学性质的数值模拟研究. 物理学报, 2014, 63(15): 150501. doi: 10.7498/aps.63.150501
    [13] 王荣, 吴莹, 刘少宝. 随机中毒对神经元网络时空动力学行为的影响. 物理学报, 2013, 62(22): 220504. doi: 10.7498/aps.62.220504
    [14] 花巍, 刘学深. 立方五次方非线性Schrodinger方程的动力学性质研究. 物理学报, 2011, 60(11): 110210. doi: 10.7498/aps.60.110210
    [15] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [16] 罗香怡, 刘学深, 丁培柱. 立方非线性Schr?dinger方程的动力学性质研究及其解模式的漂移. 物理学报, 2007, 56(2): 604-610. doi: 10.7498/aps.56.604
    [17] 王瑞敏, 赵 鸿. 神经元传输函数对人工神经网络动力学特性的影响. 物理学报, 2007, 56(2): 730-739. doi: 10.7498/aps.56.730
    [18] 肖宇飞, 王登龙, 王凤姣, 颜晓红. 非对称的玻色-爱因斯坦凝聚中的约瑟夫森结的动力学性质. 物理学报, 2006, 55(2): 547-550. doi: 10.7498/aps.55.547
    [19] 周耐根, 周 浪. 外延生长薄膜中失配位错形成条件的分子动力学模拟研究. 物理学报, 2005, 54(7): 3278-3283. doi: 10.7498/aps.54.3278
    [20] 张 林, 王绍青, 叶恒强. 大角度Cu晶界在升温、急冷条件下晶界结构的分子动力学研究. 物理学报, 2004, 53(8): 2497-2502. doi: 10.7498/aps.53.2497
计量
  • 文章访问数:  3413
  • PDF下载量:  180
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-02
  • 修回日期:  2023-09-09
  • 上网日期:  2023-09-18
  • 刊出日期:  2023-09-20

/

返回文章
返回