-
连续变量量子秘密共享方案基于物理学基本定律, 能够保证密钥信息的无条件安全. 然而, 在实际连续变量量子秘密共享方案中, 量子态的制备往往并非是理想、完美的, 会引入额外的过噪声, 影响方案的安全性, 因此有必要对其进行分析. 本文提出基于非理想量子态制备的实际连续变量量子秘密共享方案. 具体而言, 在所提出的方案中假定有多个用户, 并且任意一个用户的非理想量子态制备, 可以描述为相对应的不可信第三方采用相位非敏感放大器, 对该用户的理想调制器与激光器进行放大操作. 每个用户由于非理想量子态制备所引入的等效过噪声, 可以通过相对应的相位非敏感放大器的增益参数进行全面与定量地计算. 研究结果表明, 连续变量量子秘密共享方案对非理想量子态制备所引入的过噪声非常敏感, 因此不可避免地会降低其性能和安全性. 幸运的是, 本文利用相位非敏感放大器特定的增益公式, 获得所提出方案对非理想量子态制备所引入的额外过噪声容忍度的上界限, 有效解决由非理想量子态制备所带来的安全隐患. 由于考虑了非理想量子态制备所引入的额外过噪声, 因此相比于理想连续变量量子秘密共享方案, 所提出的方案能够得到更紧的密钥率曲线. 这些结果表明, 本文所提出的方案能够对连续变量量子秘密共享方案的实际安全性进行改进与完善, 为其实用化发展提供理论依据.Continuous variable quantum secret sharing protocol can guarantee the unconditional security of secret key information based on the fundamental laws of physics. However, the state preparation operation may become non-ideal and imperfect in practical continuous variable quantum secret sharing scheme, which will introduce additional excess noise and affect the security of the scheme. Therefore, it is necessary to analyze it. We propose a practical continuous variable quantum secret sharing protocol based on imperfect state preparation. Specifically, in the proposed scheme, we assume that there are multiple users, and the imperfect state preparation performed by any user is equivalent to the corresponding untrusted third party using a phase insensitive amplifier to amplify the ideal modulator and laser owned by the user. The equivalent excess noise introduced by the imperfect state preparation can be calculated comprehensively and quantitatively through the gain of the corresponding phase insensitive amplifier. The results show that the continuous variable quantum secret sharing scheme is sensitive to the excess noise introduced by the imperfect state preparation operation, which will inevitably reduce its performance and security. Fortunately, the upper bound of the additional excess noise tolerance for the imperfect state preparation is achieved by using the specific gain formula of the phase insensitive amplifier, thus the security risks caused by the imperfect state preparation can be effectively solved. Due to considering the additional excess noise introduced by imperfect state preparation, tighter secret key rate curves can be obtained by the proposed scheme than those by the ideal continuous variable quantum secret sharing protocol. These results indicate that the proposed scheme can improve the practical security of continuous variable quantum secret sharing scheme, and provide a theoretical basis for its practical applications.
[1] Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar
[2] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar
[3] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar
[4] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C, Han Z F 2022 Nat. Photon. 16 154Google Scholar
[5] Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar
[6] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photon. 15 570Google Scholar
[7] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F 2019 Phys. Rev. X 9 021046
[8] Liu W Z, Zhang Y Z, Zhen Y Z, Li M H, Liu Y, Fan J , Xu F, Zhang Q, Pan J W 2022 Phys. Rev. Lett. 129 050502
[9] 吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报 71 240304Google Scholar
Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304Google Scholar
[10] Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar
[11] 钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar
Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin. 70 020301Google Scholar
[12] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar
[13] Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201
[14] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar
[15] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature (London) 421 238Google Scholar
[16] Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar
[17] Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar
[18] Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar
[19] Chen Z, Zhang Y, Wang G, Li Z, Guo H 2018 Phys. Rev. A 98 012314Google Scholar
[20] Qi B, Evans P G, Grice W P 2018 Phys. Rev. A 97 012317Google Scholar
[21] Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar
[22] Huang P, Wang T, Chen R, Wang P, Zhou Y, Zeng G 2021 New J. Phys. 23 113028Google Scholar
[23] Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar
[24] Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar
[25] Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315Google Scholar
[26] Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M, Weinfurter H 2005 Phys. Rev. Lett. 95 230505Google Scholar
[27] He G P 2007 Phys. Rev. Lett. 98 028901Google Scholar
[28] Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M, Weinfurter H 2007 Phys. Rev. Lett. 98 028902Google Scholar
[29] He G P, Wang Z D 2010 Quantum Inf. Comput. 10 28
[30] Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar
[31] Wu X , Wang Y, Huang D 2020 Phys. Rev. A 101 022301Google Scholar
[32] Liao Q, Liu H, Zhu L, Guo Y 2021 Phys. Rev. A 103 032410Google Scholar
[33] Liu W, Wang X, Wang N, Du S, Li Y 2017 Phys. Rev. A 96 042312Google Scholar
[34] Shen Y, Yang J, Guo H 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235506Google Scholar
[35] Usenko V C, Filip R 2010 Phys. Rev. A 81 022318Google Scholar
[36] Jouguet P, Kunz J S, Diamanti E, Leverrier A 2012 Phys. Rev. A 86 032309Google Scholar
[37] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar
[38] Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar
[39] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar
[40] Huang P, He G Q, Zeng G H 2013 Int. J. Theor. Phys. 52 1572Google Scholar
[41] Huang D, Huang P, Wang T, Li H, Zhou Y, Zeng G 2016 Phys. Rev. A 94 032305Google Scholar
[42] Zhang H, Fang J, He G 2012 Phys. Rev. A 86 022338Google Scholar
[43] Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar
-
图 1 基于非理想量子态制备的实际CV-QSS方案. AM为振幅调制器, PM为相位调制器, DHD为共扼零差探测, HABS为高度非对称分束器, ${Q_s}{\text{ (}}s = 1, {\text{ 2, }} \cdots {, }M)$表示第$s$个用户${U_s}$处的相位非敏感放大器
Fig. 1. Practical CV-QSS scheme based on imperfect quantum state preparation. AM, amplitude modulator; PM, phase modulator; DHD, double homodyne detection; HABS, highly asymmetric beam splitter; ${Q_s}{\text{ (}}s = 1, {\text{ 2, }} \cdots {, }M)$, phase insensitive amplifier at the s-th user.
图 2 基于非理想量子态制备的CV-QSS制备-测量方案图. QM为量子存储器, $T$表示非可信信道的透过率, ${\chi _{{\text{line}}}}$表示信道附加噪声
Fig. 2. Schematic diagram of the prepare-and-measure (PM) model of the practical CV-QSS scheme based on imperfect quantum state preparation. QM, quantum memory; $T$, transmission efficiency; ${\chi _{{\text{line}}}}$, channel-added noise.
-
[1] Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar
[2] Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar
[3] Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar
[4] Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C, Han Z F 2022 Nat. Photon. 16 154Google Scholar
[5] Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar
[6] Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photon. 15 570Google Scholar
[7] Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F 2019 Phys. Rev. X 9 021046
[8] Liu W Z, Zhang Y Z, Zhen Y Z, Li M H, Liu Y, Fan J , Xu F, Zhang Q, Pan J W 2022 Phys. Rev. Lett. 129 050502
[9] 吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报 71 240304Google Scholar
Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304Google Scholar
[10] Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar
[11] 钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar
Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin. 70 020301Google Scholar
[12] Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar
[13] Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201
[14] Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar
[15] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature (London) 421 238Google Scholar
[16] Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar
[17] Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar
[18] Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar
[19] Chen Z, Zhang Y, Wang G, Li Z, Guo H 2018 Phys. Rev. A 98 012314Google Scholar
[20] Qi B, Evans P G, Grice W P 2018 Phys. Rev. A 97 012317Google Scholar
[21] Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar
[22] Huang P, Wang T, Chen R, Wang P, Zhou Y, Zeng G 2021 New J. Phys. 23 113028Google Scholar
[23] Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar
[24] Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar
[25] Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315Google Scholar
[26] Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M, Weinfurter H 2005 Phys. Rev. Lett. 95 230505Google Scholar
[27] He G P 2007 Phys. Rev. Lett. 98 028901Google Scholar
[28] Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M, Weinfurter H 2007 Phys. Rev. Lett. 98 028902Google Scholar
[29] He G P, Wang Z D 2010 Quantum Inf. Comput. 10 28
[30] Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar
[31] Wu X , Wang Y, Huang D 2020 Phys. Rev. A 101 022301Google Scholar
[32] Liao Q, Liu H, Zhu L, Guo Y 2021 Phys. Rev. A 103 032410Google Scholar
[33] Liu W, Wang X, Wang N, Du S, Li Y 2017 Phys. Rev. A 96 042312Google Scholar
[34] Shen Y, Yang J, Guo H 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235506Google Scholar
[35] Usenko V C, Filip R 2010 Phys. Rev. A 81 022318Google Scholar
[36] Jouguet P, Kunz J S, Diamanti E, Leverrier A 2012 Phys. Rev. A 86 032309Google Scholar
[37] Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar
[38] Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar
[39] Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar
[40] Huang P, He G Q, Zeng G H 2013 Int. J. Theor. Phys. 52 1572Google Scholar
[41] Huang D, Huang P, Wang T, Li H, Zhou Y, Zeng G 2016 Phys. Rev. A 94 032305Google Scholar
[42] Zhang H, Fang J, He G 2012 Phys. Rev. A 86 022338Google Scholar
[43] Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar
计量
- 文章访问数: 2318
- PDF下载量: 68
- 被引次数: 0