搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于非理想量子态制备的实际连续变量量子秘密共享方案

吴晓东 黄端

引用本文:
Citation:

基于非理想量子态制备的实际连续变量量子秘密共享方案

吴晓东, 黄端

Practical continuous variable quantum secret sharing scheme based on non-ideal quantum state preparation

Wu Xiao-Dong, Huang Duan
PDF
HTML
导出引用
  • 连续变量量子秘密共享方案基于物理学基本定律, 能够保证密钥信息的无条件安全. 然而, 在实际连续变量量子秘密共享方案中, 量子态的制备往往并非是理想、完美的, 会引入额外的过噪声, 影响方案的安全性, 因此有必要对其进行分析. 本文提出基于非理想量子态制备的实际连续变量量子秘密共享方案. 具体而言, 在所提出的方案中假定有多个用户, 并且任意一个用户的非理想量子态制备, 可以描述为相对应的不可信第三方采用相位非敏感放大器, 对该用户的理想调制器与激光器进行放大操作. 每个用户由于非理想量子态制备所引入的等效过噪声, 可以通过相对应的相位非敏感放大器的增益参数进行全面与定量地计算. 研究结果表明, 连续变量量子秘密共享方案对非理想量子态制备所引入的过噪声非常敏感, 因此不可避免地会降低其性能和安全性. 幸运的是, 本文利用相位非敏感放大器特定的增益公式, 获得所提出方案对非理想量子态制备所引入的额外过噪声容忍度的上界限, 有效解决由非理想量子态制备所带来的安全隐患. 由于考虑了非理想量子态制备所引入的额外过噪声, 因此相比于理想连续变量量子秘密共享方案, 所提出的方案能够得到更紧的密钥率曲线. 这些结果表明, 本文所提出的方案能够对连续变量量子秘密共享方案的实际安全性进行改进与完善, 为其实用化发展提供理论依据.
    Continuous variable quantum secret sharing protocol can guarantee the unconditional security of secret key information based on the fundamental laws of physics. However, the state preparation operation may become non-ideal and imperfect in practical continuous variable quantum secret sharing scheme, which will introduce additional excess noise and affect the security of the scheme. Therefore, it is necessary to analyze it. We propose a practical continuous variable quantum secret sharing protocol based on imperfect state preparation. Specifically, in the proposed scheme, we assume that there are multiple users, and the imperfect state preparation performed by any user is equivalent to the corresponding untrusted third party using a phase insensitive amplifier to amplify the ideal modulator and laser owned by the user. The equivalent excess noise introduced by the imperfect state preparation can be calculated comprehensively and quantitatively through the gain of the corresponding phase insensitive amplifier. The results show that the continuous variable quantum secret sharing scheme is sensitive to the excess noise introduced by the imperfect state preparation operation, which will inevitably reduce its performance and security. Fortunately, the upper bound of the additional excess noise tolerance for the imperfect state preparation is achieved by using the specific gain formula of the phase insensitive amplifier, thus the security risks caused by the imperfect state preparation can be effectively solved. Due to considering the additional excess noise introduced by imperfect state preparation, tighter secret key rate curves can be obtained by the proposed scheme than those by the ideal continuous variable quantum secret sharing protocol. These results indicate that the proposed scheme can improve the practical security of continuous variable quantum secret sharing scheme, and provide a theoretical basis for its practical applications.
      通信作者: 黄端, duanhuang@csu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61972418, 61977062, 61801522)和福建理工大学科研启动基金 (批准号: GY-Z22042)资助的课题.
      Corresponding author: Huang Duan, duanhuang@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61972418, 61977062, 61801522) and the Scientific Research Initiation Fund of Fujian University of Technology, China (Grant No. GY-Z22042).
    [1]

    Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar

    [2]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [3]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [4]

    Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C, Han Z F 2022 Nat. Photon. 16 154Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [6]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photon. 15 570Google Scholar

    [7]

    Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F 2019 Phys. Rev. X 9 021046

    [8]

    Liu W Z, Zhang Y Z, Zhen Y Z, Li M H, Liu Y, Fan J , Xu F, Zhang Q, Pan J W 2022 Phys. Rev. Lett. 129 050502

    [9]

    吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报 71 240304Google Scholar

    Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304Google Scholar

    [10]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [11]

    钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar

    Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin. 70 020301Google Scholar

    [12]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [13]

    Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201

    [14]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [15]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature (London) 421 238Google Scholar

    [16]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [17]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [18]

    Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar

    [19]

    Chen Z, Zhang Y, Wang G, Li Z, Guo H 2018 Phys. Rev. A 98 012314Google Scholar

    [20]

    Qi B, Evans P G, Grice W P 2018 Phys. Rev. A 97 012317Google Scholar

    [21]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar

    [22]

    Huang P, Wang T, Chen R, Wang P, Zhou Y, Zeng G 2021 New J. Phys. 23 113028Google Scholar

    [23]

    Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar

    [24]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [25]

    Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315Google Scholar

    [26]

    Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M, Weinfurter H 2005 Phys. Rev. Lett. 95 230505Google Scholar

    [27]

    He G P 2007 Phys. Rev. Lett. 98 028901Google Scholar

    [28]

    Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M, Weinfurter H 2007 Phys. Rev. Lett. 98 028902Google Scholar

    [29]

    He G P, Wang Z D 2010 Quantum Inf. Comput. 10 28

    [30]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar

    [31]

    Wu X , Wang Y, Huang D 2020 Phys. Rev. A 101 022301Google Scholar

    [32]

    Liao Q, Liu H, Zhu L, Guo Y 2021 Phys. Rev. A 103 032410Google Scholar

    [33]

    Liu W, Wang X, Wang N, Du S, Li Y 2017 Phys. Rev. A 96 042312Google Scholar

    [34]

    Shen Y, Yang J, Guo H 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235506Google Scholar

    [35]

    Usenko V C, Filip R 2010 Phys. Rev. A 81 022318Google Scholar

    [36]

    Jouguet P, Kunz J S, Diamanti E, Leverrier A 2012 Phys. Rev. A 86 032309Google Scholar

    [37]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar

    [38]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [39]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [40]

    Huang P, He G Q, Zeng G H 2013 Int. J. Theor. Phys. 52 1572Google Scholar

    [41]

    Huang D, Huang P, Wang T, Li H, Zhou Y, Zeng G 2016 Phys. Rev. A 94 032305Google Scholar

    [42]

    Zhang H, Fang J, He G 2012 Phys. Rev. A 86 022338Google Scholar

    [43]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

  • 图 1  基于非理想量子态制备的实际CV-QSS方案. AM为振幅调制器, PM为相位调制器, DHD为共扼零差探测, HABS为高度非对称分束器, ${Q_s}{\text{ (}}s = 1, {\text{ 2, }} \cdots {, }M)$表示第$s$个用户${U_s}$处的相位非敏感放大器

    Fig. 1.  Practical CV-QSS scheme based on imperfect quantum state preparation. AM, amplitude modulator; PM, phase modulator; DHD, double homodyne detection; HABS, highly asymmetric beam splitter; ${Q_s}{\text{ (}}s = 1, {\text{ 2, }} \cdots {, }M)$, phase insensitive amplifier at the s-th user.

    图 2  基于非理想量子态制备的CV-QSS制备-测量方案图. QM为量子存储器, $T$表示非可信信道的透过率, ${\chi _{{\text{line}}}}$表示信道附加噪声

    Fig. 2.  Schematic diagram of the prepare-and-measure (PM) model of the practical CV-QSS scheme based on imperfect quantum state preparation. QM, quantum memory; $T$, transmission efficiency; ${\chi _{{\text{line}}}}$, channel-added noise.

    图 3  基于非理想量子态制备的CV-QSS纠缠模型方案图

    Fig. 3.  Schematic diagram of the entanglement-based (EB) model of the practical CV-QSS scheme based on imperfect quantum state preparation.

    图 4  所提出方案的密钥率与调制方差的关系 (a) 不同传输距离$L$; (b) 不同用户数量$M$

    Fig. 4.  The relationship between the secret key rate of the proposed scheme and the modulation variance under: (a) Different transmission distance $L$; (b) different numbers of users $M$.

    图 5  所提出方案的密钥率与传输距离的关系 (a) $g = 1$; (b) $g = 1.001$; (c) $g = 1.002$; (d) $g = 1.003$

    Fig. 5.  The relationship between the secret key rate of the proposed scheme and the transmission distance: (a) $g = 1$; (b) $g = $$ 1.001$; (c) $g = 1.002$; (d) $g = 1.003$.

    图 6  在不同传输距离$L$下, 所提出方案的密钥率与增益参数$g$的关系

    Fig. 6.  The relationship between the secret key rate of the proposed scheme and the gain g under different transmission distances $L$.

  • [1]

    Liu H, Jiang C, Zhu H T, Zou M, Yu Z W, Hu X L, Xu H, Ma S, Han Z, Chen J P, Dai Y, Tang S B, Zhang W, Li H, You L, Wang Z, Hua Y, Hu H, Zhang H, Zhou F, Zhang Q, Wang X B, Chen T Y, Pan J W 2021 Phys. Rev. Lett. 126 250502Google Scholar

    [2]

    Xu F, Ma X, Zhang Q, Lo H K, Pan J W 2020 Rev. Mod. Phys. 92 025002Google Scholar

    [3]

    Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J L, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P, Wallden P 2020 Adv. Opt. Photon. 12 1012Google Scholar

    [4]

    Wang S, Yin Z Q, He D Y, Chen W, Wang R Q, Ye P, Zhou Y, Fan-Yuan G J, Wang F X, Chen W, Zhu Y G, Morozov P V, Divochiy A V, Zhou Z, Guo G C, Han Z F 2022 Nat. Photon. 16 154Google Scholar

    [5]

    Yin J, Li Y H, Liao S K, Yang M, Cao Y, Zhang L, Ren J G, Cai W Q, Liu W Y, Li S L, Shu R, Huang Y M, Deng L, Li L, Zhang Q, Liu N L, Chen Y A, Lu C Y, Wang X B, Xu F H, Wang J Y, Peng C Z, Ekert A K, Pan J W 2020 Nature 582 501Google Scholar

    [6]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W J, Han Z Y, Ma S Z, Hu X L, Li Y H, Liu H, Zhou F, Jiang H F, Chen T Y, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2021 Nat. Photon. 15 570Google Scholar

    [7]

    Wang S, He D Y, Yin Z Q, Lu F Y, Cui C H, Chen W, Zhou Z, Guo G C, Han Z F 2019 Phys. Rev. X 9 021046

    [8]

    Liu W Z, Zhang Y Z, Zhen Y Z, Li M H, Liu Y, Fan J , Xu F, Zhang Q, Pan J W 2022 Phys. Rev. Lett. 129 050502

    [9]

    吴晓东, 黄端, 黄鹏, 郭迎 2022 物理学报 71 240304Google Scholar

    Wu X D, Huang D, Huang P, Guo Y 2022 Acta Phys. Sin. 71 240304Google Scholar

    [10]

    Wu X D, Wang Y J, Zhong H, Liao Q, Guo Y 2019 Front. Phys. 14 41501Google Scholar

    [11]

    钟海, 叶炜, 吴晓东, 郭迎 2021 物理学报 70 020301Google Scholar

    Zhong H, Ye W, Wu X D, Guo Y 2021 Acta Phys. Sin. 70 020301Google Scholar

    [12]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [13]

    Huang D, Huang P, Lin D , Zeng G 2016 Sci. Rep. 6 19201

    [14]

    Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S, Guo H 2020 Phys. Rev. Lett. 125 010502Google Scholar

    [15]

    Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J, Grangier P 2003 Nature (London) 421 238Google Scholar

    [16]

    Leverrier A 2015 Phys. Rev. Lett. 114 070501Google Scholar

    [17]

    Laudenbach F, Pacher C, Fung C H F, Poppe A, Peev M, Schrenk B, Hentschel M, Walther P, Hübel H 2018 Adv. Quantum Technol. 1 1800011Google Scholar

    [18]

    Leverrier A 2017 Phys. Rev. Lett. 118 200501Google Scholar

    [19]

    Chen Z, Zhang Y, Wang G, Li Z, Guo H 2018 Phys. Rev. A 98 012314Google Scholar

    [20]

    Qi B, Evans P G, Grice W P 2018 Phys. Rev. A 97 012317Google Scholar

    [21]

    Qi B, Gunther H, Evans P G, Williams B P, Camacho R M, Peters N A 2020 Phys. Rev. Appl. 13 054065Google Scholar

    [22]

    Huang P, Wang T, Chen R, Wang P, Zhou Y, Zeng G 2021 New J. Phys. 23 113028Google Scholar

    [23]

    Wu X, Wang Y, Guo Y, Zhong H, Huang D 2021 Phys. Rev. A 103 032604Google Scholar

    [24]

    Hillery M, Bužek V, Berthiaume A 1999 Phys. Rev. A 59 1829Google Scholar

    [25]

    Kogias I, Xiang Y, He Q Y, Adesso G 2017 Phys. Rev. A 95 012315Google Scholar

    [26]

    Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M, Weinfurter H 2005 Phys. Rev. Lett. 95 230505Google Scholar

    [27]

    He G P 2007 Phys. Rev. Lett. 98 028901Google Scholar

    [28]

    Schmid C, Trojek P, Bourennane M, Kurtsiefer C, Zukowski M, Weinfurter H 2007 Phys. Rev. Lett. 98 028902Google Scholar

    [29]

    He G P, Wang Z D 2010 Quantum Inf. Comput. 10 28

    [30]

    Grice W P, Qi B 2019 Phys. Rev. A 100 022339Google Scholar

    [31]

    Wu X , Wang Y, Huang D 2020 Phys. Rev. A 101 022301Google Scholar

    [32]

    Liao Q, Liu H, Zhu L, Guo Y 2021 Phys. Rev. A 103 032410Google Scholar

    [33]

    Liu W, Wang X, Wang N, Du S, Li Y 2017 Phys. Rev. A 96 042312Google Scholar

    [34]

    Shen Y, Yang J, Guo H 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235506Google Scholar

    [35]

    Usenko V C, Filip R 2010 Phys. Rev. A 81 022318Google Scholar

    [36]

    Jouguet P, Kunz J S, Diamanti E, Leverrier A 2012 Phys. Rev. A 86 032309Google Scholar

    [37]

    Fossier S, Diamanti E, Debuisschert T, Tualle-Brouri R, Grangier P 2009 J. Phys. B: At. Mol. Opt. Phys. 42 114014Google Scholar

    [38]

    Diamanti E, Leverrier A 2015 Entropy 17 6072Google Scholar

    [39]

    Lodewyck J, Bloch M, García-Patrón R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [40]

    Huang P, He G Q, Zeng G H 2013 Int. J. Theor. Phys. 52 1572Google Scholar

    [41]

    Huang D, Huang P, Wang T, Li H, Zhou Y, Zeng G 2016 Phys. Rev. A 94 032305Google Scholar

    [42]

    Zhang H, Fang J, He G 2012 Phys. Rev. A 86 022338Google Scholar

    [43]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

  • [1] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241094
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [3] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [4] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [5] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [6] 钟海, 叶炜, 吴晓东, 郭迎. 基于光前置放大器的量子密钥分发融合经典通信方案. 物理学报, 2021, 70(2): 020301. doi: 10.7498/aps.70.20200855
    [7] 翟淑琴, 康晓兰, 刘奎. 基于级联四波混频过程的量子导引. 物理学报, 2021, 70(16): 160301. doi: 10.7498/aps.70.20201981
    [8] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [9] 叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云. 基于量子催化的离散调制连续变量量子密钥分发. 物理学报, 2020, 69(6): 060301. doi: 10.7498/aps.69.20191689
    [10] 罗均文, 吴德伟, 李响, 朱浩男, 魏天丽. 微波连续变量极化纠缠. 物理学报, 2019, 68(6): 064204. doi: 10.7498/aps.68.20181911
    [11] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享. 物理学报, 2016, 65(16): 160301. doi: 10.7498/aps.65.160301
    [12] 韦克金, 马海强, 汪龙. 一种基于双偏振分束器的量子秘密共享方案. 物理学报, 2013, 62(10): 104205. doi: 10.7498/aps.62.104205
    [13] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [14] 闫智辉, 贾晓军, 谢常德, 彭堃墀. 利用非简并光学参量振荡腔产生连续变量三色三组分纠缠态. 物理学报, 2012, 61(1): 014206. doi: 10.7498/aps.61.014206
    [15] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [16] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [17] 孙 莹, 杜建忠, 秦素娟, 温巧燕, 朱甫臣. 具有双向认证功能的量子秘密共享方案. 物理学报, 2008, 57(8): 4689-4694. doi: 10.7498/aps.57.4689
    [18] 邓文武, 郑 俊, 谭华堂, 李高翔. 非简并四波混频体系中双模光场的纠缠特性. 物理学报, 2007, 56(12): 6970-6975. doi: 10.7498/aps.56.6970
    [19] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
    [20] 杨宇光, 温巧燕, 朱甫臣. 单个N维量子系统的量子秘密共享. 物理学报, 2006, 55(7): 3255-3258. doi: 10.7498/aps.55.3255
计量
  • 文章访问数:  2122
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-03
  • 修回日期:  2023-10-28
  • 上网日期:  2023-11-16
  • 刊出日期:  2024-01-20

/

返回文章
返回