搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚醚酰亚胺纳米复合电介质中指数分布陷阱电荷跳跃输运对储能性能的影响

宋小凡 闵道敏 高梓巍 王泊心 郝予涛 高景晖 钟力生

引用本文:
Citation:

聚醚酰亚胺纳米复合电介质中指数分布陷阱电荷跳跃输运对储能性能的影响

宋小凡, 闵道敏, 高梓巍, 王泊心, 郝予涛, 高景晖, 钟力生

Effect exponentially distributed trapped charge jump transport on energy storage performance in polyetherimide nanocomposite dielectric

Song Xiao-Fan, Min Dao-Min, Gao Zi-Wei, Wang Po-Xin, Hao Yu-Tao, Gao Jing-Hui, Zhong Li-Sheng
PDF
HTML
导出引用
  • 目前常见聚合物电介质电容器的储能性能在高温下会急剧劣化, 难以满足航空航天和能源等领域的需求. 为提高介质高温储能性能, 常掺杂纳米填料对电介质改性, 通过改变电介质内部陷阱参数来调控电荷输运过程, 但其内部陷阱的能级和密度与储能性能间的定量关系仍需进一步研究. 本文构建线性聚合物纳米复合电介质中指数分布陷阱电荷跳跃输运的储能与释能模型并进行了仿真. 纯聚醚酰亚胺在150 ℃的体积电阻率和电位移矢量-电场强度回线的仿真结果与实验符合, 证明了模型的有效性. 不同陷阱参数纳米复合电介质的仿真结果表明, 增大总陷阱密度和最深陷阱能级, 会降低载流子迁移率、电流密度和电导损耗, 提升放电能量密度和充放电效率. 在150 ℃和550 kV/mm外施场强下, 1.0 eV最深陷阱能级和1×1027 m–3总陷阱密度的纳米复合电介质放电能量密度和充放电效率分别为4.26 J/cm3和98.93%, 相比纯聚醚酰亚胺提升率分别为91.09%和227.58%, 显著提升了高温储能性能. 本研究为耐高温高储能性能电容器的研发提供了理论和模型支撑.
    With the development of science and technology, polymer dielectric capacitors are widely used in energy, electronics, transportation, aerospace, and many other areas. For polymer dielectric energy storage capacitors to remain effective in practical applications, excellent charge and discharge performance is essential. However, the performance of the common polymer dielectric capacitors will deteriorate rapidly at high temperature, which makes them fail to work efficiently under worse working conditions. Dielectric trap energy levels and trap densities increase when nanoparticles are incorporated into the dielectric. The change in trap parameters will affect carrier transport. Therefore, the high temperature energy storage performance of polymer nanocomposite dielectric can be improved by changing the trap parameters to regulate the carrier transport process. However, the quantitative relationship between trap energy level and trap density and the energy storage properties of nanocomposite dielectric need further studying. In this paper, the energy storage and release model for exponentially distributed trapped charge jump transport in linear polymer nanocomposite dielectrics is constructed and simulated. The volume resistivity and electric displacement-electric field loops of pure polyetherimide are simulated at 150 ℃, and the simulation results match the experimental results, which demonstrates the validity of the model. Following that, under different temperatures and electric fields, the current density, electric displacement-electric field loops, discharge energy density and charge-discharge efficiency of polyetherimide nanocomposite dielectric are simulated by using different trap parameters. The results show that increasing the maximum trap energy level and the total trap density can effectively reduce the carrier mobility, current density and conductivity loss, and enhance the discharge energy density and the charge-discharge efficiency of the nanocomposite dielectric. On condition that temperature is 150 ℃ and applied electric field is 550 kV/mm, the polyetherimide nanocomposite dielectric with a maximum trap energy level of 1.0 eV and a total trap density of 1×1027 m–3, has 4.26 J·cm–3 of discharge energy density and 98.93% of energy efficiency. Compared with pure polyetherimide, the rate of improvement is 91.09% and 227.58%, respectively. The energy storage performance under high temperature and high electric field is obviously improved. It provides theoretical and model support for the research and development of capacitors with high temperature resistance and energy storage performance.
      通信作者: 闵道敏, forrestmin@foxmail.com ; 高景晖, gaojinghui@xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 52077162)、国家自然科学基金委员会与中国工程物理研究院联合基金(批准号: U1830131)和电力设备电气绝缘国家重点实验室(批准号: EIPE22301)资助的课题.
      Corresponding author: Min Dao-Min, forrestmin@foxmail.com ; Gao Jing-Hui, gaojinghui@xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52077162), the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics (Grant No. U1830131), and the State Key Laboratory of Electrical Insulation and Power Equipment, China (Grant No. EIPE22301).
    [1]

    Miao W J, Chen H X, Pan Z B, Pei X L, Li L, Li P, Liu J J, Zhai J W, Pan H 2021 Compos. Sci. Technol. 201 108501Google Scholar

    [2]

    Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020 Energy Stor. Mater. 28 255Google Scholar

    [3]

    Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2021 Chem. Eng. J. 420 127614Google Scholar

    [4]

    Li H, Ai D , Ren L L , Yao B, Han Z B, Shen Z H, Wang J J , Chen L Q , Wang Q 2019 Adv. Mater. 31 1900875

    [5]

    李琦, 李曼茜 2021 高电压技术 47 3105Google Scholar

    LI Q, LI M Q 2021 High Volt. Eng. 47 3105Google Scholar

    [6]

    Li Z Z, Treich G M, Tefferi M, Wu C, Nasreen S, Scheirey S K, Ramprasad R, Sotzing G A, Cao Y 2019 J. Mater. Chem. A 7 15026Google Scholar

    [7]

    Li H, Liu F H, Fan B Y, Ai D, Peng Z R, Wang Q 2018 Small Methods 2 1700399Google Scholar

    [8]

    查俊伟, 黄文杰, 杨兴, 万宝全, 郑明胜 2023 高电压技术 49 1055Google Scholar

    Zha J W, Huang W J, Yang X, Wan B Q, Zheng M S 2023 High volt. Eng. 49 1055Google Scholar

    [9]

    Chi Q G, Zhou Y H, Feng Y, Cui Y, Zhang Y, Zhang T D, Chen Q G 2020 Mater. Today Energy 18 100516Google Scholar

    [10]

    Yuan C, Zhou Y, Zhu Y J, Liang J J, Wang S J, Peng S M, Li Y S, Cheng S, Yang M C, Hu J, Zhang B, Zeng R, He J L, Li Q 2020 Nat. Commun. 11 3919Google Scholar

    [11]

    Ren L L, Qiao J Q, Wang C, Zheng W Y, Li H, Zhao X T, Yang L J, Liao R J 2022 Mater. Today Energy 30 101161Google Scholar

    [12]

    Fan Z H, Zhang Y Y, Jiang Y, Luo Z M, He Y B, Zhang Q F 2022 J. Mater. Res. Technol. 18 4367Google Scholar

    [13]

    Chen H X, Pan Z B, Wang W L, Chen Y Y, Xing S, Cheng Y, Ding X P, Liu J J, Zhai J W, Yu J H 2021 Compos. Part A Appl. Sci. Manuf. 142 106266Google Scholar

    [14]

    Min D M, Ji M Z, Li P X, Gao Z W, Liu W F, Li S T, Liu J 2021 IEEE Trans. Dielectr. Electr. Insul. 28 2011Google Scholar

    [15]

    Kuik M, Koster L J, Wetzelaer G A, Blom P W 2011 Phys. Rev. Lett. 107 256805Google Scholar

    [16]

    Sun B Z, Hu P H, Ji X M, Fan M Z, Zhou L, Guo M F, He S, Shen Y 2022 Small 18 e2202421Google Scholar

    [17]

    Ding X P, Pan Z B, Cheng Y, Chen H X, Li Z C, Fan X, Liu J J, Yu J H, Zhai J W 2023 Chem. Eng. J. 453 139917Google Scholar

    [18]

    Hoang A T, Serdyuk Y V, Gubanski S M 2016 Polymers 8 103Google Scholar

    [19]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego: Elsevier Academic Press

    [20]

    Jakobs A, Kehr K W 1993 Phys. Rev. B 48 8780Google Scholar

    [21]

    金维芳 1997 电介质物理学 (北京: 机械工业出版社)

    Jin W F 1997 Dielectric Physics (Beijing: China Machine Press

    [22]

    Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson N T, Wang Q 2015 Nature 523 576Google Scholar

    [23]

    Lewis T J 1994 IEEE Trans. Dielectr. Electr. Insul. 1 812Google Scholar

    [24]

    Yang M Z, Ren W B, Guo M F, Shen Y 2022 Small 18 e2205247Google Scholar

    [25]

    Li H, Ren L L, Ai D, Han Z B, Liu Y, Yao B, Wang Q 2019 InfoMat 2 389Google Scholar

    [26]

    Akram S, Yang Y, Zhong X, Bhutta S, Wu G N, Castellon J, Zhou K 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1461Google Scholar

    [27]

    马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 物理学报 66 067701Google Scholar

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H X 2017 Acta Phys. Sin. 66 067701Google Scholar

    [28]

    查俊伟, 查磊军, 郑明胜 2023 物理学报 72 018401Google Scholar

    Zha J W, Zha L J, Zheng M S 2023 Acta Phys. Sin. 72 018401Google Scholar

    [29]

    Ding X P, Pan Z B, Zhang Y, Shi S H, Cheng Y, Chen H X, Li Z C, Fan X, Liu J J, Yu J H, Zhai J W 2022 Adv. Mater. Interfaces 9 2201100Google Scholar

    [30]

    Ren L L, Yang L J, Zhang S Y, Li H, Zhou Y, Ai D, Xie Z L, Zhao X T, Peng Z R, Liao R J, Wang Q 2021 Compos. Sci. Technol. 201 108528Google Scholar

    [31]

    Boufayed F, Teyssèdre G, Laurent C, Le Roy S, Dissado L A, Ségur P, Montanari G C 2006 J. Appl. Phys. 100 104105Google Scholar

    [32]

    Yan J J, Wang J, Zeng J Y, Shen Z H, Li B W, Zhang X, Zhang S J 2022 J. Mater. Chem. C 10 13157Google Scholar

  • 图 1  指数分布陷阱电荷跳跃输运过程的储能与释能模型示意图

    Fig. 1.  Schematic diagram of energy storage and release model.

    图 2  (a)恒定电压波形; (b)三角电压波形

    Fig. 2.  (a) Constant voltage waveform and (b) external triangular voltage waveform.

    图 3  (a)纯PEI薄膜的实验测量[10,22]与仿真计算的体积电阻率; (b)仿真计算出纯PEI薄膜在不同电场下的电位移矢量-电场强度回线; (c)最大电位移和残余电位移仿真结果与实验结果[10,22]对比

    Fig. 3.  (a) Comparison of experimental volume resistivities[10,22] and simulation results of pure PEI film; (b) simulation results of the D-E loops of pure PEI film under different electric fields; (c) comparison of simulation results of Dmax and Dr and experiments[10,22].

    图 4  (a)在150 ℃, 总陷阱密度为3×1026 m–3、具有不同最深陷阱能级PEI纳米复合电介质下的Dr随外施电场变化关系; (b)在550 kV/mm, 最深陷阱能级为0.8 eV、具有不同总陷阱密度PEI纳米复合电介质的Dr随温度变化关系

    Fig. 4.  (a) Dependence between Dr and applied electric fields in PEI nanocomposite dielectrics with different deepest trap levels at the total trap density of 3×1026 m–3 and 150 ℃; (b) dependence between Dr and temperatures in PEI nanocomposite dielectrics with different total trap densities at the deepest trap level of 0.8 eV and 500 kV/mm.

    图 5  各温度下, 不同陷阱参数PEI纳米复合电介质的电流密度-时间特性

    Fig. 5.  Current density time characteristics of PEI nanocomposite dielectric with different trap parameters at various temperatures.

    图 6  在150 ℃, 外施电场为200 kV/mm 和总陷阱密度为3×1026 m–3下, 最深陷阱能级分别为0.8 eV (a), 0.9 eV (b)和1.0 eV (c) 的空间电荷分布

    Fig. 6.  Space charge distribution with the deepest trap energy levels of 0.8 eV (a), 0.9 eV (b), and 1.0 eV (c) at 150 ℃, 200 kV/mm, and the total trap density of 3×1026 m–3, respectively.

    图 7  在150 ℃, 最深陷阱能级分别为1.0 eV的放电能量密度-电场强度和充放电效率-电场强度特性

    Fig. 7.  The discharged energy density and the energy efficiency characteristics at 150 ℃ and the deepest trap level of 1.0 eV.

    图 8  不同陷阱参数下PEI纳米复合电介质的放电能量密度 (a) 100 ℃, 650 kV/mm; (b) 125 ℃, 600 kV/mm; (c) 150 ℃, 550 kV/mm

    Fig. 8.  The discharge energy density of PEI nanocomposite dielectric under different trap parameters: (a) 100 ℃, 650 kV/mm; (b) 125 ℃, 600 kV/mm; (c) 150 ℃, 550 kV/mm.

    图 9  不同陷阱参数下PEI纳米复合电介质的充放电效率 (a) 100 ℃, 650 kV/mm; (b) 125 ℃, 600 kV/mm; (c) 150 ℃, 550 kV/mm

    Fig. 9.  The energy efficiency of PEI nanocomposite dielectric under different trap parameters: (a) 100 ℃, 650 kV/mm; (b) 125 ℃, 600 kV/mm; (c) 150 ℃, 550 kV/mm.

    表 1  指数分布陷阱电荷跳跃输运的PEI纳米复合电介质储能与释能模型参数设置

    Table 1.  Parameter setting of energy storage and release model for PEI nanocomposite dielectric with exponentially distributed trap jump transport.

    参数
    温度/℃ 100—150
    总陷阱密度/m–3 3×1026—1×1027
    最深陷阱能级/eV 0.8—1.0
    指数分布形状参数/K 1200
    外施电场强度/(kV·mm–1) 100—650 (100 ℃)
    100—600 (125 ℃)
    100—550 (150 ℃)
    下载: 导出CSV
  • [1]

    Miao W J, Chen H X, Pan Z B, Pei X L, Li L, Li P, Liu J J, Zhai J W, Pan H 2021 Compos. Sci. Technol. 201 108501Google Scholar

    [2]

    Zhou Y, Yuan C, Wang S J, Zhu Y J, Cheng S, Yang X, Yang Y, Hu J, He J L, Li Q 2020 Energy Stor. Mater. 28 255Google Scholar

    [3]

    Ren W B, Pan J Y, Dan Z K, Zhang T, Jiang J Y, Fan M Z, Hu P H, Li M, Lin Y H, Nan C W, Shen Y 2021 Chem. Eng. J. 420 127614Google Scholar

    [4]

    Li H, Ai D , Ren L L , Yao B, Han Z B, Shen Z H, Wang J J , Chen L Q , Wang Q 2019 Adv. Mater. 31 1900875

    [5]

    李琦, 李曼茜 2021 高电压技术 47 3105Google Scholar

    LI Q, LI M Q 2021 High Volt. Eng. 47 3105Google Scholar

    [6]

    Li Z Z, Treich G M, Tefferi M, Wu C, Nasreen S, Scheirey S K, Ramprasad R, Sotzing G A, Cao Y 2019 J. Mater. Chem. A 7 15026Google Scholar

    [7]

    Li H, Liu F H, Fan B Y, Ai D, Peng Z R, Wang Q 2018 Small Methods 2 1700399Google Scholar

    [8]

    查俊伟, 黄文杰, 杨兴, 万宝全, 郑明胜 2023 高电压技术 49 1055Google Scholar

    Zha J W, Huang W J, Yang X, Wan B Q, Zheng M S 2023 High volt. Eng. 49 1055Google Scholar

    [9]

    Chi Q G, Zhou Y H, Feng Y, Cui Y, Zhang Y, Zhang T D, Chen Q G 2020 Mater. Today Energy 18 100516Google Scholar

    [10]

    Yuan C, Zhou Y, Zhu Y J, Liang J J, Wang S J, Peng S M, Li Y S, Cheng S, Yang M C, Hu J, Zhang B, Zeng R, He J L, Li Q 2020 Nat. Commun. 11 3919Google Scholar

    [11]

    Ren L L, Qiao J Q, Wang C, Zheng W Y, Li H, Zhao X T, Yang L J, Liao R J 2022 Mater. Today Energy 30 101161Google Scholar

    [12]

    Fan Z H, Zhang Y Y, Jiang Y, Luo Z M, He Y B, Zhang Q F 2022 J. Mater. Res. Technol. 18 4367Google Scholar

    [13]

    Chen H X, Pan Z B, Wang W L, Chen Y Y, Xing S, Cheng Y, Ding X P, Liu J J, Zhai J W, Yu J H 2021 Compos. Part A Appl. Sci. Manuf. 142 106266Google Scholar

    [14]

    Min D M, Ji M Z, Li P X, Gao Z W, Liu W F, Li S T, Liu J 2021 IEEE Trans. Dielectr. Electr. Insul. 28 2011Google Scholar

    [15]

    Kuik M, Koster L J, Wetzelaer G A, Blom P W 2011 Phys. Rev. Lett. 107 256805Google Scholar

    [16]

    Sun B Z, Hu P H, Ji X M, Fan M Z, Zhou L, Guo M F, He S, Shen Y 2022 Small 18 e2202421Google Scholar

    [17]

    Ding X P, Pan Z B, Cheng Y, Chen H X, Li Z C, Fan X, Liu J J, Yu J H, Zhai J W 2023 Chem. Eng. J. 453 139917Google Scholar

    [18]

    Hoang A T, Serdyuk Y V, Gubanski S M 2016 Polymers 8 103Google Scholar

    [19]

    Kao K C 2004 Dielectric Phenomena in Solids (San Diego: Elsevier Academic Press

    [20]

    Jakobs A, Kehr K W 1993 Phys. Rev. B 48 8780Google Scholar

    [21]

    金维芳 1997 电介质物理学 (北京: 机械工业出版社)

    Jin W F 1997 Dielectric Physics (Beijing: China Machine Press

    [22]

    Li Q, Chen L, Gadinski M R, Zhang S H, Zhang G Z, Li H U, Iagodkine E, Haque A, Chen L Q, Jackson N T, Wang Q 2015 Nature 523 576Google Scholar

    [23]

    Lewis T J 1994 IEEE Trans. Dielectr. Electr. Insul. 1 812Google Scholar

    [24]

    Yang M Z, Ren W B, Guo M F, Shen Y 2022 Small 18 e2205247Google Scholar

    [25]

    Li H, Ren L L, Ai D, Han Z B, Liu Y, Yao B, Wang Q 2019 InfoMat 2 389Google Scholar

    [26]

    Akram S, Yang Y, Zhong X, Bhutta S, Wu G N, Castellon J, Zhou K 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1461Google Scholar

    [27]

    马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯 2017 物理学报 66 067701Google Scholar

    Ma C, Min D M, Li S T, Zheng X, Li X Y, Min C, Zhan H X 2017 Acta Phys. Sin. 66 067701Google Scholar

    [28]

    查俊伟, 查磊军, 郑明胜 2023 物理学报 72 018401Google Scholar

    Zha J W, Zha L J, Zheng M S 2023 Acta Phys. Sin. 72 018401Google Scholar

    [29]

    Ding X P, Pan Z B, Zhang Y, Shi S H, Cheng Y, Chen H X, Li Z C, Fan X, Liu J J, Yu J H, Zhai J W 2022 Adv. Mater. Interfaces 9 2201100Google Scholar

    [30]

    Ren L L, Yang L J, Zhang S Y, Li H, Zhou Y, Ai D, Xie Z L, Zhao X T, Peng Z R, Liao R J, Wang Q 2021 Compos. Sci. Technol. 201 108528Google Scholar

    [31]

    Boufayed F, Teyssèdre G, Laurent C, Le Roy S, Dissado L A, Ségur P, Montanari G C 2006 J. Appl. Phys. 100 104105Google Scholar

    [32]

    Yan J J, Wang J, Zeng J Y, Shen Z H, Li B W, Zhang X, Zhang S J 2022 J. Mater. Chem. C 10 13157Google Scholar

  • [1] 卓俊添, 林铭浩, 张齐艳, 黄双武. 热塑性聚酰亚胺/氧化铝三明治结构柔性电介质薄膜的设计制备及其高温介电储能性能. 物理学报, 2024, 73(17): 177701. doi: 10.7498/aps.73.20240838
    [2] 李雨凡, 薛文清, 李玉超, 战艳虎, 谢倩, 李艳凯, 查俊伟. 三明治结构柔性储能电介质材料研究进展. 物理学报, 2024, 73(2): 027702. doi: 10.7498/aps.73.20230614
    [3] 查俊伟, 查磊军, 郑明胜. 聚偏氟乙烯基复合材料储能特性优化策略. 物理学报, 2023, 72(1): 018401. doi: 10.7498/aps.72.20222012
    [4] 张改, 谢海妹, 宋海滨, 李晓菲, 张茜, 亢一澜. 不同充放电模式影响还原氧化石墨烯电极储锂性能的实验分析. 物理学报, 2022, 71(6): 066501. doi: 10.7498/aps.71.20211405
    [5] 徐强, 司雪, 佘维汉, 杨光敏. 超电容储能电极材料的密度泛函理论研究. 物理学报, 2021, 70(10): 107301. doi: 10.7498/aps.70.20201988
    [6] 董久锋, 邓星磊, 牛玉娟, 潘子钊, 汪宏. 面向高温介电储能应用的聚合物基电介质材料研究进展. 物理学报, 2020, 69(21): 217701. doi: 10.7498/aps.69.20201006
    [7] 王娇, 刘少辉, 周梦, 郝好山, 翟继卫. 钛酸锶纳米纤维表面羟基化处理对聚偏氟乙烯复合材料介电性能和储能性能的影响. 物理学报, 2020, 69(21): 218101. doi: 10.7498/aps.69.20200592
    [8] 王娇, 刘少辉, 陈长青, 郝好山, 翟继卫. 钛酸钡基/聚偏氟乙烯复合介质材料的界面改性与储能性能. 物理学报, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [9] 沈忠慧, 江彦达, 李宝文, 张鑫. 高储能密度铁电聚合物纳米复合材料研究进展. 物理学报, 2020, 69(21): 217706. doi: 10.7498/aps.69.20201209
    [10] 马超, 闵道敏, 李盛涛, 郑旭, 李西育, 闵超, 湛海涯. 聚丙烯/氧化铝纳米电介质的陷阱与直流击穿特性. 物理学报, 2017, 66(6): 067701. doi: 10.7498/aps.66.067701
    [11] 袁端磊, 闵道敏, 黄印, 谢东日, 王海燕, 杨芳, 朱志豪, 费翔, 李盛涛. 掺杂含量对环氧纳米复合电介质陷阱与空间电荷的影响. 物理学报, 2017, 66(9): 097701. doi: 10.7498/aps.66.097701
    [12] 朱智恩, 张冶文, 安振连, 郑飞虎. 用光刺激放电法研究纳米粉末掺杂低密度聚乙烯中陷阱能级. 物理学报, 2012, 61(6): 067701. doi: 10.7498/aps.61.067701
    [13] 张辉, 肖明珠, 张国英, 路广霞, 朱圣龙. 基于密度泛函理论解读不同高密度储氢材料释氢能力. 物理学报, 2011, 60(2): 026103. doi: 10.7498/aps.60.026103
    [14] 董丽芳, 杨玉杰, 刘为远, 岳晗, 王帅, 刘忠伟, 陈强. 不同电介质结构下介质阻挡放电特性研究. 物理学报, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [15] 朱智恩, 张冶文, 安振连, 郑飞虎. 电介质陷阱能量分布的光刺激放电法实验研究. 物理学报, 2010, 59(7): 5067-5072. doi: 10.7498/aps.59.5067
    [16] 董丽芳, 王红芳, 刘微粒, 贺亚峰, 刘富成, 刘书华. 介质阻挡放电中电介质参量对放电时间特性的影响. 物理学报, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [17] 刘龙平, 赵振杰, 黄灿星, 吴志明, 杨燮龙. 复合结构丝中的电流密度分布和巨磁阻抗效应. 物理学报, 2006, 55(4): 2014-2020. doi: 10.7498/aps.55.2014
    [18] 刘红侠, 郑雪峰, 郝跃. 薄栅氧化层中陷阱电荷密度的测量方法. 物理学报, 2002, 51(1): 163-166. doi: 10.7498/aps.51.163
    [19] 张华, 范滇元. 组合式钕玻璃片状激光放大器增益性能的动态模拟. 物理学报, 2001, 50(12): 2375-2381. doi: 10.7498/aps.50.2375
    [20] 刘付德, 凌志远, 熊茂仁. 固体介质中电偶极子介电常数温度特性与能级密度分布关系. 物理学报, 1995, 44(8): 1302-1309. doi: 10.7498/aps.44.1302
计量
  • 文章访问数:  3259
  • PDF下载量:  111
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-08
  • 修回日期:  2023-07-26
  • 上网日期:  2023-09-05
  • 刊出日期:  2024-01-20

/

返回文章
返回