搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抗方阻波动的超宽带轻薄频率选择表面吸波体

王东俊 孙子涵 张袁 唐莉 闫丽萍

引用本文:
Citation:

抗方阻波动的超宽带轻薄频率选择表面吸波体

王东俊, 孙子涵, 张袁, 唐莉, 闫丽萍

Ultra-wideband thin frequency-selective surface absorber against sheet resistance fluctuation

Wang Dong-Jun, Sun Zi-Han, Zhang Yuan, Tang Li, Yan Li-Ping
PDF
HTML
导出引用
  • 满足宽带、极化和入射角度稳定、轻薄和强吸收等高性能要求的电阻膜频率选择表面(FSS)吸波体设计难度大, 且易因加工中方阻波动导致吸波性能变化. 为此, 本文首先分析了方阻波动影响电阻膜FSS吸波体性能的机理, 提出抗方阻波动的FSS吸波体设计方法. 在此基础上, 提出利用不同层FSS阻抗随频率变化互补的扩展带宽方法, 结合弯折小型化设计, 获得了超宽带、极化和角度稳定的轻薄型抗方阻波动FSS吸波体. 该FSS吸波体在TE和TM极化下, 90%吸波带宽为1.50—20.50 GHz (相对带宽173%), 厚度仅为0.093λL. TE极化波80%吸波的角度稳定性可达45°, 而TM极化波90%吸波的角度稳定性可达70°. 当每层FSS方阻在12—30 Ω/sq范围内波动时, 吸波体的90%吸波带宽仍保持在167.0%. 实验测试结果与仿真结果基本吻合, 证明了所提方法的有效性.
    The design of thin frequency selective surface (FSS) absorber based on resistive film that meets the requirements of broadband, polarization independence, incident angle stability, and strong absorption is a challenging task. Fabrication tolerance of resistive film can result in fluctuations in sheet resistance, which negatively affects the absorber performance. To tackle these problems, this work firstly investigates how sheet resistance fluctuations affect the absorbing performance of resistive film FSS absorber. The analysis of simulated surface current density distribution and impedance reveals that the diversity of current paths provides an effective way to mitigate the influence of sheet resistance fluctuation. This is achieved by enabling flexible variation of surface current in response to sheet resistance fluctuations. Consequently, the variation of input impedance of the FSS absorber due to the fluctuation of sheet resistance is suppressed within a small range. Then, a method of extending bandwidth is proposed by employing the complementary variation of FSS impedance with frequency at different layers. By combining this approach with a miniaturization design, a thin and light FSS absorber is developed that exhibits ultra-wide bandwidth, polarization independence and angle stability while mitigating the effects of sheet resistance perturbation. The proposed FSS absorber achieves a 90% absorption bandwidth from 1.50 GHz to 20.50 GHz, covering Ku, X, C, S bands and part of the L and K bands, with a relative bandwidth reaching 173%. The absorber has a thickness of 0.093λL for both transverse electric (TE) polarization and transverse magnetic (TM) polarization, yielding a figure of merit (FoM, the ratio of the theoretical minimum thickness to the actual thickness) of 0.95, indicating that the thickness is close to the theoretical limit. The absorber maintains over 90% absorption rate for TM polarization at an incidence angle of up to 70°, and 80% absorption for TE polarization at 45°. Furthermore, the 90% absorbance bandwidth of the absorber remains at 167.0% when the sheet resistance of any FSS layer fluctuates within a range from 12 to 30 Ω/sq. A prototype of the proposed FSS absorber is fabricated and measured, and the experimental results are in good agreement with the simulation results, thus validating the effectiveness of the proposed method.
      通信作者: 闫丽萍, liping_yan@scu.edu.cn
    • 基金项目: 国家自然科学基金区域创新发展联合基金 (批准号: U22A2015)资助的课题.
      Corresponding author: Yan Li-Ping, liping_yan@scu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U22A2015).
    [1]

    Ramya S, Rao I S 2016 Prog. Electromagn. Res. 50 23Google Scholar

    [2]

    Li M, Shen L, Jing L Q, Xu S, Zheng B, Lin X, Yang Y H, Wang Z J, Chen H S 2019 Adv. Sci. 6 1901434Google Scholar

    [3]

    Nguyen T K T, Cao T N, Nguyen N H, Tuyen L D, Bui X K, Truong C L, Vu D L, Nguyen T Q H 2021 IEEE Photonics J. 13 1Google Scholar

    [4]

    Wang Z J, Yang H C, Jing L Q 2023 J. Opt. 25 74002Google Scholar

    [5]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar

    [6]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang Z H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [7]

    冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar

    Feng K S, Li N, Li T, 2022 Acta Phys. Sin. 71 034101Google Scholar

    [8]

    Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar

    [9]

    Huang Z, Luo Z N, Zhao Y, Li H R, Si K X, Han Y, Miao L, Jiang J J 2023 IEEE Trans. Antennas Propag. 71 6191Google Scholar

    [10]

    Panwar R, Puthucheri S, Singh D, Agarwala V 2015 IEEE Trans. Magn. 51 2802804Google Scholar

    [11]

    赵宇婷, 李迎松, 杨国辉 2020 物理学报 69 198101Google Scholar

    Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101Google Scholar

    [12]

    Chakradhary V K, Baskey H B, Roshan R, Pathik A, Akhtar M. J 2018 IEEE Trans. Microwave Theory Tech. 66 4737Google Scholar

    [13]

    Zuo P P, Li T W, Wang M J, Zheng H X, Li E P 2020 IEEE Access 8 6583Google Scholar

    [14]

    Shukoor M A, Dey S 2022 IEEE Trans. Electromagn. Compat. 64 1337Google Scholar

    [15]

    Hossain M I, Nguyen-Trong N, Sayidmarie K H, Abbosh, A. M 2020 IEEE Trans. Antennas Propag. 68 8215Google Scholar

    [16]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230Google Scholar

    [17]

    Yao Z X, Xiao S Q, Jiang Z G, Yan L, Wang B Z 2020 IEEE Antennas Wirel. Propag. Lett. 19 591Google Scholar

    [18]

    Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE Trans. Microwave Theory Tech. 63 2438Google Scholar

    [19]

    Yang J, Shen Z X 2007 IEEE Antennas Wirel. Propag. Lett. 6 388Google Scholar

    [20]

    王莹, 程用志, 聂彦, 龚荣洲 2013 物理学报 62 074101Google Scholar

    Wang Y, Cheng Y Z, Nie Y, Gong R Z 2013 Acta Phys. Sin. 62 074101Google Scholar

    [21]

    吴雨明, 王任, 丁霄, 王秉中 2020 物理学报 69 224201Google Scholar

    Wu Y M, Wang R, Ding X, Wang B Z 2020 Acta Phys. Sin. 69 224201Google Scholar

    [22]

    Shi T, Jin L, Han L, Tang M C, Xu H X, Qiu C W 2021 IEEE Trans. Antennas Propag. 69 229Google Scholar

    [23]

    He Y, Feng W S, Guo S, Wei J F, Zhang Y L, Huang Z, Li C L, Miao L, Jiang J J 2020 IEEE Antennas Wirel. Propag. Lett. 19 841Google Scholar

    [24]

    Yao Z X, Xiao S Q, Li Y, Wang B Z 2022 IEEE Trans. Antennas Propag. 70 7276Google Scholar

    [25]

    Ma Z Y P, Jiang C, Cao W B, Li J L, Huang X Z 2022 IEEE Trans. Antennas Propag. 70 9376Google Scholar

    [26]

    Luo G Q, Yu W, Yu Y, Zhang X H, Shen Z X 2020 IEEE Trans. Microwave Theory Techn. 68 4206.Google Scholar

    [27]

    Hao X J, Lin X Q, Yang X M, Su Y H, Yao Y, Yang Y L 2023 IEEE Antennas Wirel. Propag. Lett. 22 59Google Scholar

    [28]

    Zhang Q Q, Zhao Z Z, Zheng J H, Li F R, Tang J Z, Huang Y, Ren Y X, Chen X M 2023 IEEE Trans. Instrum. Meas. 72 8002010Google Scholar

    [29]

    Cao Z W, Li H R, Wu Y, Yao G J, Zhao Y, Huang Z, Guo S, Miao L, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 11217Google Scholar

    [30]

    Cao Z W, Yao G J, Zha D C, Zhao Y, Wu Y, Miao L, Bie S W, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 9942Google Scholar

    [31]

    顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤 2011 物理学报 60 087801Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W, Ma H 2011 Acta Phys. Sin. 60 087801Google Scholar

    [32]

    Sun Z H, Yan L P, Zhao X, Gao R X K 2023 IEEE Antennas Wirel. Propag. Lett. 22 789Google Scholar

    [33]

    Tirkey M M, Gupta N 2022 IEEE Trans. Electromagn. Compat. 64 66Google Scholar

    [34]

    He F, Si K X, Li R, Zha D C, Dong J X, Miao L, Bie S W, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 8643Google Scholar

    [35]

    Kazemzadeh A 2011 IEEE Trans. Antennas Propag. 59 135Google Scholar

    [36]

    Shi T, Tang M C, Yang J N, Yan X S 2022 IEEE Antennas Wireless Propag. Lett. 21 551Google Scholar

    [37]

    程用志, 聂彦, 龚荣洲, 王鲜 2013 物理学报 62 044103Google Scholar

    Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103Google Scholar

    [38]

    郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801Google Scholar

    Guo F, Du H L, Qu S B Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar

    [39]

    Hossain M I, Nguyer-Trong N, Abbosh A M 2022 IEEE Trans. Antennas Propag. 70 410Google Scholar

    [40]

    Zheng L, Yang X Z, Gong W, Qiao M K, Li X C 2022 IEEE Antennas Wirel. Propag. Lett. 21 576Google Scholar

    [41]

    Li Y, Gu P F, He Z etc. 2022 IEEE Trans. Antennas Propag. 70 11911Google Scholar

    [42]

    Fan Y D, Li D, Ma H Z, Xing J Q, Gu Y J, Ang L K, Li E P 2023 IEEE Trans. Antennas Propag. 71 2855Google Scholar

    [43]

    Zhu M, Yuan H, Li H Y, Wang Y, Cao Q S 2022 IEEE Trans. Electromagn. Compat. 64 2005Google Scholar

    [44]

    Wang Y, Min X F, Zhao M X, Yuan H, Li R H, Hu X R, Cao Q S 2022 IEEE Antennas Wirel. Propag. Lett. 21 2125Google Scholar

    [45]

    Chen Q, Sang D, Guo M, Fu Y Q, 2018 IEEE Trans. Antennas Propag. 66 4105Google Scholar

    [46]

    Xing Q J, Wu W W, Yan Y C, Zhang X M, Yuan N C 2022 IEEE Antennas Wirel. Propag. Lett. 21 1688Google Scholar

    [47]

    Jiang H, Yang W, Lei S W, Hu H Q, Chen B, Bao Y F, He Z Y 2021 Opt. Express 29 29439Google Scholar

    [48]

    Li D D, Hu X J, Gao B T, Yin W Y, Chen H S, Qian H L 2023 Prog. Electromagn. Res. 176 35Google Scholar

    [49]

    Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2013 IEEE Trans. Antennas Propag. 61 976Google Scholar

    [50]

    Min P P, Song Z C, Yang L, Dai B, Zhu J Q 2020 Opt. Express 28 19518Google Scholar

    [51]

    孔祥林, 马洪宇, 陈鹏等 2021 电波科学学报 36 947Google Scholar

    Kong X L, Ma H Y, Chen P etc. 2021 Chin. J. Radio Sci. 36 947Google Scholar

  • 图 1  分形FSS吸波体结构 (a) 无方环时和 (b) 有方环时的十字分形FSS单元结构; (c) 吸波体侧视图

    Fig. 1.  Structure of the proposed fractal FSS absorber: The cross-fractal structure (a) without and (b) with square ring; (c) side view of the absorber.

    图 2  分形FSS吸波体的反射系数

    Fig. 2.  The scattering parameters of the fractal FSS absorber.

    图 3  不同方阻时分形FSS吸波体的 (a)反射系数和(b)吸波率

    Fig. 3.  (a) Reflection coefficient and (b) absorption rate of the fractal FSS absorbers with respect to different sheet resistance.

    图 4  分形FSS吸波体的输入阻抗随方阻波动的变化 (a) 等效电阻; (b) 等效电抗

    Fig. 4.  Input impedance of the fractal FSS absorber with respect to fluctuation of sheet resistance: (a) Resistance; (b) reactance.

    图 5  高性能FSS吸波体结构图 (a) 整体结构; (b) FSS I, (c) FSS II 和(d) FSS III的单元结构

    Fig. 5.  Configuration of the proposed FSS absorber: (a) Perspective view; unit cell of (b) FSS I, (c) FSS II and (d) FSS III.

    图 6  FSS 吸波体(a)分层结构示意图及(b)输入电导和(c)输入电纳

    Fig. 6.  The schematic (a) and input conductance (b) and susceptance (c) of the proposed FSS absorber.

    图 7  各层处的输入阻抗 (a) 等效电阻; (b) 等效电抗

    Fig. 7.  Input impedance at each layer: (a) Resistance; (b) reactance.

    图 8  FSS 吸波体散射参数

    Fig. 8.  The scattering parameters of the proposed FSS absorber.

    图 9  FSS 吸波体吸波率随入射角的变化 (a) TE 极化; (b) TM 极化

    Fig. 9.  Absorption rate with respect to incident angles for (a) TE and (b) TM polarizations.

    图 10  (a) FSS Ⅰ, (b) FSS Ⅱ 和 (c) FSS Ⅲ 方阻 Rs1, Rs2, Rs3变化对吸波率的影响(注意: 当一层 FSS 层方阻变化时, 另外两层取原值)

    Fig. 10.  Effects of (a) Rs1, (b) Rs2 and (c) Rs3 on absorption rate of the proposed FSS absorber. Note that when the sheet resistance of one FSS layer changes, the other two layers take their original values

    图 11  (a) FSS Ⅰ 方阻为 5 Ω/sq 和(b) FSS Ⅰ 方阻为 35 Ω/sq 时其他 FSS 层方阻同时变化对吸波率的影响

    Fig. 11.  Effects of simultaneous variation of square resistances of 2nd and 3rd layers on the absorption performance.

    图 12  (a) 加工样件; (b) 实验测试系统

    Fig. 12.  (a) Fabricated prototype; (b) the experimental setup

    图 13  (a) TE 与(b) TM 极化下垂直入射测试结果与仿真结果对比

    Fig. 13.  Comparison of measurement and simulation results of (a) TE and (b) TM polarizations for normal incidence.

    图 14  (a) TE 与(b) TM 极化下不同入射角吸波率测试结果

    Fig. 14.  The measured absorption rate of (a) TE and (b) TM polarizations with respect to incident angles.

    表 1  分形FSS吸波体参数

    Table 1.  Structural parameters of the fractal FSS absorber.

    参量值/mm参量值/mm
    l13.90w10.58
    l22.59w20.58
    l31.38w30.20
    P11.85t10.175
    h5.00t20.05
    下载: 导出CSV

    表 2  不同方阻情况下分形FSS吸波体的表面电流密度分布

    Table 2.  Surface current density of the fractal FSS absorber for different sheet resistance

    频率 方阻
    8 Ω/sq 11 Ω/sq 14 Ω/sq 17 Ω/sq 21 Ω/sq
    8 GHz
    11 GHz
    15 GHz
    下载: 导出CSV

    表 3  FSS吸波体参数

    Table 3.  Structural parameters of the FSS absorber.

    参量值/mm参量值/mm参量值/mm
    l110.28w10.20s10.56
    g10.90r13.30wr10.38
    r22.54r31.78l211.78
    w20.50i22.18s24.74
    ws20.54g21.62l310.64
    w30.22i32.96s32.60
    ws30.40g31.06P11.90
    h16.00h20.175
    下载: 导出CSV

    表 4  与其他宽带FSS吸波体的性能对比

    Table 4.  Comparison between the proposed and other FSS absorbers.

    文献 90%带宽/GHz FBW/% 厚度 (FoM) FSS层数 角度稳定性
    TE TM
    [15] 1.07—9.70 160.3 0.93 2 30° (80%) 60° (80%)
    [17] 2.24—11.40 134.3 0.075 λL 2 45° (80%) 30° (87%)
    [22] 2.11—3.89 59.3 0.090 λL 3D 50° (90%) 50° (90%)
    [25] 5.80—22.20 117.1 0.155 λL 1 50° (90%) 40° (90%)
    [29] 0.87—9.28 165.8 0.086 λL 2 45° (80%) 45° (90%)
    [31] 7.0—27.5 118.8 0.096 λL 1 45° (80%) 30° (80%)
    [32] 2.79—20.62 152.0 0.119 λL 2 60° (80%) 60° (80%)
    [34]# 2.0—15.5 154.3 0.113 λL 1
    [36] 1.14—14.2 170.2 0.093 λL 3 30° (90%) 50° (90%)
    [37] 7.5—42.0 139.4 0.02 λL 2 50° (> 80%) 50°(> 80%)
    [38] #* 7.8—18.0 79.1 0.065 λL 1
    [39]* 0.76—4.92 146.5 0.031 λL 2
    [41] 2.1—37.5 179.0 0.98 4 45° (80%) 60° (90%)-
    [51] 3.16—51.6 176.9 0.102 λL 4 45° (80%) 45° (88%)
    本文设计 1.50—20.50 173.0 0.95或0.093 λL 3 45° (80%) 70° (90%)
    注: # 代表所用介质层为有耗电介质层; * 代表介质层为有耗磁介质.
    下载: 导出CSV
  • [1]

    Ramya S, Rao I S 2016 Prog. Electromagn. Res. 50 23Google Scholar

    [2]

    Li M, Shen L, Jing L Q, Xu S, Zheng B, Lin X, Yang Y H, Wang Z J, Chen H S 2019 Adv. Sci. 6 1901434Google Scholar

    [3]

    Nguyen T K T, Cao T N, Nguyen N H, Tuyen L D, Bui X K, Truong C L, Vu D L, Nguyen T Q H 2021 IEEE Photonics J. 13 1Google Scholar

    [4]

    Wang Z J, Yang H C, Jing L Q 2023 J. Opt. 25 74002Google Scholar

    [5]

    Liu T, Cao X Y, Gao J, Zheng Q R, Li W Q, Yang H H 2013 IEEE Trans. Antennas Propag. 61 1479Google Scholar

    [6]

    王彦朝, 许河秀, 王朝辉, 王明照, 王少杰 2020 物理学报 69 134101Google Scholar

    Wang Y Z, Xu H X, Wang Z H, Wang M Z, Wang S J 2020 Acta Phys. Sin. 69 134101Google Scholar

    [7]

    冯奎胜, 李娜, 李桐 2022 物理学报 71 034101Google Scholar

    Feng K S, Li N, Li T, 2022 Acta Phys. Sin. 71 034101Google Scholar

    [8]

    Yu J, Jiang W, Gong S X 2020 IEEE Antennas Wirel. Propag. Lett. 19 1058Google Scholar

    [9]

    Huang Z, Luo Z N, Zhao Y, Li H R, Si K X, Han Y, Miao L, Jiang J J 2023 IEEE Trans. Antennas Propag. 71 6191Google Scholar

    [10]

    Panwar R, Puthucheri S, Singh D, Agarwala V 2015 IEEE Trans. Magn. 51 2802804Google Scholar

    [11]

    赵宇婷, 李迎松, 杨国辉 2020 物理学报 69 198101Google Scholar

    Zhao Y T, Li Y S, Yang G H 2020 Acta Phys. Sin. 69 198101Google Scholar

    [12]

    Chakradhary V K, Baskey H B, Roshan R, Pathik A, Akhtar M. J 2018 IEEE Trans. Microwave Theory Tech. 66 4737Google Scholar

    [13]

    Zuo P P, Li T W, Wang M J, Zheng H X, Li E P 2020 IEEE Access 8 6583Google Scholar

    [14]

    Shukoor M A, Dey S 2022 IEEE Trans. Electromagn. Compat. 64 1337Google Scholar

    [15]

    Hossain M I, Nguyen-Trong N, Sayidmarie K H, Abbosh, A. M 2020 IEEE Trans. Antennas Propag. 68 8215Google Scholar

    [16]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230Google Scholar

    [17]

    Yao Z X, Xiao S Q, Jiang Z G, Yan L, Wang B Z 2020 IEEE Antennas Wirel. Propag. Lett. 19 591Google Scholar

    [18]

    Panwar R, Puthucheri S, Agarwala V, Singh D 2015 IEEE Trans. Microwave Theory Tech. 63 2438Google Scholar

    [19]

    Yang J, Shen Z X 2007 IEEE Antennas Wirel. Propag. Lett. 6 388Google Scholar

    [20]

    王莹, 程用志, 聂彦, 龚荣洲 2013 物理学报 62 074101Google Scholar

    Wang Y, Cheng Y Z, Nie Y, Gong R Z 2013 Acta Phys. Sin. 62 074101Google Scholar

    [21]

    吴雨明, 王任, 丁霄, 王秉中 2020 物理学报 69 224201Google Scholar

    Wu Y M, Wang R, Ding X, Wang B Z 2020 Acta Phys. Sin. 69 224201Google Scholar

    [22]

    Shi T, Jin L, Han L, Tang M C, Xu H X, Qiu C W 2021 IEEE Trans. Antennas Propag. 69 229Google Scholar

    [23]

    He Y, Feng W S, Guo S, Wei J F, Zhang Y L, Huang Z, Li C L, Miao L, Jiang J J 2020 IEEE Antennas Wirel. Propag. Lett. 19 841Google Scholar

    [24]

    Yao Z X, Xiao S Q, Li Y, Wang B Z 2022 IEEE Trans. Antennas Propag. 70 7276Google Scholar

    [25]

    Ma Z Y P, Jiang C, Cao W B, Li J L, Huang X Z 2022 IEEE Trans. Antennas Propag. 70 9376Google Scholar

    [26]

    Luo G Q, Yu W, Yu Y, Zhang X H, Shen Z X 2020 IEEE Trans. Microwave Theory Techn. 68 4206.Google Scholar

    [27]

    Hao X J, Lin X Q, Yang X M, Su Y H, Yao Y, Yang Y L 2023 IEEE Antennas Wirel. Propag. Lett. 22 59Google Scholar

    [28]

    Zhang Q Q, Zhao Z Z, Zheng J H, Li F R, Tang J Z, Huang Y, Ren Y X, Chen X M 2023 IEEE Trans. Instrum. Meas. 72 8002010Google Scholar

    [29]

    Cao Z W, Li H R, Wu Y, Yao G J, Zhao Y, Huang Z, Guo S, Miao L, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 11217Google Scholar

    [30]

    Cao Z W, Yao G J, Zha D C, Zhao Y, Wu Y, Miao L, Bie S W, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 9942Google Scholar

    [31]

    顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤 2011 物理学报 60 087801Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W, Ma H 2011 Acta Phys. Sin. 60 087801Google Scholar

    [32]

    Sun Z H, Yan L P, Zhao X, Gao R X K 2023 IEEE Antennas Wirel. Propag. Lett. 22 789Google Scholar

    [33]

    Tirkey M M, Gupta N 2022 IEEE Trans. Electromagn. Compat. 64 66Google Scholar

    [34]

    He F, Si K X, Li R, Zha D C, Dong J X, Miao L, Bie S W, Jiang J J 2022 IEEE Trans. Antennas Propag. 70 8643Google Scholar

    [35]

    Kazemzadeh A 2011 IEEE Trans. Antennas Propag. 59 135Google Scholar

    [36]

    Shi T, Tang M C, Yang J N, Yan X S 2022 IEEE Antennas Wireless Propag. Lett. 21 551Google Scholar

    [37]

    程用志, 聂彦, 龚荣洲, 王鲜 2013 物理学报 62 044103Google Scholar

    Cheng Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103Google Scholar

    [38]

    郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅 2015 物理学报 64 077801Google Scholar

    Guo F, Du H L, Qu S B Xia S, Xu Z, Zhao J F, Zhang H M 2015 Acta Phys. Sin. 64 077801Google Scholar

    [39]

    Hossain M I, Nguyer-Trong N, Abbosh A M 2022 IEEE Trans. Antennas Propag. 70 410Google Scholar

    [40]

    Zheng L, Yang X Z, Gong W, Qiao M K, Li X C 2022 IEEE Antennas Wirel. Propag. Lett. 21 576Google Scholar

    [41]

    Li Y, Gu P F, He Z etc. 2022 IEEE Trans. Antennas Propag. 70 11911Google Scholar

    [42]

    Fan Y D, Li D, Ma H Z, Xing J Q, Gu Y J, Ang L K, Li E P 2023 IEEE Trans. Antennas Propag. 71 2855Google Scholar

    [43]

    Zhu M, Yuan H, Li H Y, Wang Y, Cao Q S 2022 IEEE Trans. Electromagn. Compat. 64 2005Google Scholar

    [44]

    Wang Y, Min X F, Zhao M X, Yuan H, Li R H, Hu X R, Cao Q S 2022 IEEE Antennas Wirel. Propag. Lett. 21 2125Google Scholar

    [45]

    Chen Q, Sang D, Guo M, Fu Y Q, 2018 IEEE Trans. Antennas Propag. 66 4105Google Scholar

    [46]

    Xing Q J, Wu W W, Yan Y C, Zhang X M, Yuan N C 2022 IEEE Antennas Wirel. Propag. Lett. 21 1688Google Scholar

    [47]

    Jiang H, Yang W, Lei S W, Hu H Q, Chen B, Bao Y F, He Z Y 2021 Opt. Express 29 29439Google Scholar

    [48]

    Li D D, Hu X J, Gao B T, Yin W Y, Chen H S, Qian H L 2023 Prog. Electromagn. Res. 176 35Google Scholar

    [49]

    Zhang H B, Zhou P H, Lu H P, Xu Y Q, Liang D F, Deng L J 2013 IEEE Trans. Antennas Propag. 61 976Google Scholar

    [50]

    Min P P, Song Z C, Yang L, Dai B, Zhu J Q 2020 Opt. Express 28 19518Google Scholar

    [51]

    孔祥林, 马洪宇, 陈鹏等 2021 电波科学学报 36 947Google Scholar

    Kong X L, Ma H Y, Chen P etc. 2021 Chin. J. Radio Sci. 36 947Google Scholar

  • [1] 王成蓉, 唐莉, 周艳萍, 赵翔, 刘长军, 闫丽萍. 透明可开关的超宽带频率选择表面电磁屏蔽研究. 物理学报, 2024, 73(12): 124201. doi: 10.7498/aps.73.20240339
    [2] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [3] 曾立, 刘国标, 章海锋, 黄通. 一款基于多物理场调控的超宽带线-圆极化转换器. 物理学报, 2019, 68(5): 054101. doi: 10.7498/aps.68.20181615
    [4] 徐进, 李荣强, 蒋小平, 王身云, 韩天成. 基于方形开口环的超宽带线性极化转换器. 物理学报, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [5] 郭畅, 张岩. 利用波矢滤波超表面实现超衍射成像. 物理学报, 2017, 66(14): 147804. doi: 10.7498/aps.66.147804
    [6] 张玉萍, 李彤彤, 吕欢欢, 黄晓燕, 张会云. 工字形太赫兹超材料吸波体的传感特性研究. 物理学报, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [7] 党可征, 时家明, 李志刚, 孟祥豪, 王启超. 基于高阻抗表面的多频带Salisbury屏设计. 物理学报, 2015, 64(11): 114101. doi: 10.7498/aps.64.114101
    [8] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [9] 惠忆聪, 王春齐, 黄小忠. 基于电阻型频率选择表面的宽带雷达超材料吸波体设计. 物理学报, 2015, 64(21): 218102. doi: 10.7498/aps.64.218102
    [10] 兰峰, 高喜, 亓丽梅. 基于频率选择表面的双层改进型互补结构太赫兹带通滤波器研究. 物理学报, 2014, 63(10): 104209. doi: 10.7498/aps.63.104209
    [11] 徐永顺, 别少伟, 江建军, 徐海兵, 万东, 周杰. 含螺旋单元频率选择表面的宽频带强吸收复合吸波体. 物理学报, 2014, 63(20): 205202. doi: 10.7498/aps.63.205202
    [12] 韩博琳, 娄淑琴, 鹿文亮, 苏伟, 邹辉, 王鑫. 新型超宽带双芯光子晶体光纤偏振分束器的研究. 物理学报, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [13] 刘明, 张明江, 王安帮, 王龙生, 吉勇宁, 马喆. 直接调制光反馈半导体激光器产生超宽带信号. 物理学报, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [14] 夏步刚, 张德海, 孟进, 赵鑫. 毫米波二阶分形频率选择表面寄生谐振的抑制. 物理学报, 2013, 62(17): 174103. doi: 10.7498/aps.62.174103
    [15] 宫蕴瑞, 何迪, 何晨. 混沌超宽带系统的广义负熵盲检测机理研究. 物理学报, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [16] 刘涛, 曹祥玉, 高军, 郑秋容, 李文强. 基于超材料的吸波体设计及其波导缝隙天线应用. 物理学报, 2012, 61(18): 184101. doi: 10.7498/aps.61.184101
    [17] 周航, 屈绍波, 彭卫东, 王甲富, 马华, 张东伟, 张介秋, 柏鹏, 徐卓. 一种加载电阻膜吸波材料的新型频率选择表面. 物理学报, 2012, 61(10): 104201. doi: 10.7498/aps.61.104201
    [18] 陈谦, 江建军, 别少伟, 王鹏, 刘鹏, 徐欣欣. 含有源频率选择表面可调复合吸波体. 物理学报, 2011, 60(7): 074202. doi: 10.7498/aps.60.074202
    [19] 杨锐, 谢拥军, 胡海鹏, 王瑞, 满明远, 吴召海. 超宽带异向介质平面倒F天线. 物理学报, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [20] 王 鹏, 赵 环, 赵研英, 王兆华, 田金荣, 李德华, 魏志义. 用SPIDER法测量超宽带钛宝石振荡器的激光脉宽研究. 物理学报, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
计量
  • 文章访问数:  2835
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-22
  • 修回日期:  2023-09-27
  • 上网日期:  2023-10-12
  • 刊出日期:  2024-01-20

/

返回文章
返回