搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双柔性电极模拟叉指图案电极的液体介电泳研究

尚修霆 陈陶 谌静 徐荣青

引用本文:
Citation:

基于双柔性电极模拟叉指图案电极的液体介电泳研究

尚修霆, 陈陶, 谌静, 徐荣青

Study on liquid dielectrophoresis based on double flexible electrodes simulating interdigitated pattern electrodes

Shang Xiu-Ting, Chen Tao, Chen Jing, Xu Rong-Qing
PDF
HTML
导出引用
  • 介电泳通过非均匀电场作用于介电液体内偶极子影响表面润湿性, 实现液滴接触角可调, 克服了电润湿效应的接触角饱和限制, 但其驱动电极需图案化处理, 难以实现实用的三维可调光学器件. 本文采用外裹绝缘介电层且互不导通的双柔性电极缠绕于平板基底形成二维平面线墙, 模拟叉指图案电极以驱动液体介电泳, 给出了“液滴-叉指平面线墙”模型的接触角与电压理论关系. 在0—250 Vrms电压范围内实验测量的接触角变化可达32°, 符合上述理论关系, 为构造液体介电泳三维可调光学器件提供了理论和实验基础.
    Dielectrophoresis affects the surface wettability by applying a non-uniform electric field to dipoles inside dielectric liquid, achieving adjustable droplet contact angle and overcoming the saturation limitation of contact angle caused by the electrowettability effect. However, it is difficult to realize useful three-dimensional tunable optical devices because most of the driving electrodes need to be patterned. In this work, a model of double flexible electrodes simulating planar interdigitated pattern electrodes is proposed based on the dielectrophoresis. Double flexible electrodes, which are wrapped with an insulating dielectric layer and are not conductive to each other are arranged at close intervals and wound along the plane substrate to form a two-dimensional planar line wall. A hydrophobic layer is used to fill the gap and increase the initial contact angle. Ultimately, the “droplet-interdigitated planar line wall” dielectrophoresis driven-droplet model is formed after the dielectric droplets have been deposited on the line wall surface. Firstly, considering the influence of penetration depth and electrode gap area, Young’s equation is theoretically modified to adapt to this model. Then, the finite element algorithm simulation is used to used to comparatively analyze the potential distribution of this model and the planar interdigitated pattern electrode model. The field strength distributions of the electrodes with different wire diameters and insulating layer thickness values are analyzed. It can be found that with the increase of the diameter of the electrode wire and the thickness of the insulating layer, the morphology of the model changes from the tip electrode into the planar electrode, the surface field strength attenuates exponentially and the peak value decreases. This shows that the structure of this electrode in this model is superior to that of the planar electrode. After that, the contact angle of the model is measured experimentally in a range of 58°-90° under 0–250 Vrms voltage, which is in line with the theoretical expectation. At the same time, neither obvious contact angle lag nor saturation is observed in the experiment. Finally, the new electrophoretic driving droplet model constructed in this paper transforms the dielectric electrophoretic driving mode from a two-dimensional planar electrode to a one-dimensional flexible linear electrode. Because of its flexibility and plasticity, it is convenient to form a three-dimensional cavity and can be applied to more complex device structures.
      通信作者: 陈陶, chent@njupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11974188, 61905117)、中国博士后科学基金(批准号: 2021T140339, 2018M632345)、江苏省博士后科学基金(批准号: 2021K617C)和镇江市重点研发计划(批准号: GY2023009)资助的课题.
      Corresponding author: Chen Tao, chent@njupt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974188, 61905117), the China Postdoctoral Science Foundation (Grant Nos. 2021T140339, 2018M632345), the Postdoctoral Science Foundation of Jiangsu Province, China (Grant No. 2021K617C), and the Key Research and Development Program of Zhenjiang, China (Grant No. GY2023009).
    [1]

    McHale G, Brown, C V, Newton M I, Wells G G, Sampara N 2011 Phys. Rev. Lett. 107 186101Google Scholar

    [2]

    Huhtamäki T, Tian X, Korhonen J T, Ras R H 2018 Nat. Protoc. 13 1521Google Scholar

    [3]

    Armstrong S, McHale G, Ledesma-Aguilar R, Wells G G 2020 Langmuir 36 11332Google Scholar

    [4]

    Kedzierski J, Holihan E 2018 Sci. Robot 3 eaat5643Google Scholar

    [5]

    Renaudot R, Daunay B, Kumemura M, Agache V, Jalabert L, Collard D, Fujita H 2013 Sens. Actuat. B Chem. 177 620Google Scholar

    [6]

    Quinn A, Sedev R, Ralston J 2005 J. Phys. Chem. B 109 6268Google Scholar

    [7]

    Frozanpoor I, Cooke M D, Ambukan V, Gallant A J, Balocco C 2021 Langmuir 37 6414Google Scholar

    [8]

    Mahani M A, Karimvand A N, Naserifar N 2023 J. Sep. Sci. 46 2300257Google Scholar

    [9]

    Jiang L X, Liang F, Huo M X, Ju M Q, Xu J, Ju S, Xu J J, Ju S W, Jin L H, Shen B J 2023 Microelectron. Eng. 282 112100Google Scholar

    [10]

    Huang K, Lu B, Lai J, Chu H K H 2019 IEEE Trans. Biomed. Circuits Syst. 13 1063Google Scholar

    [11]

    Xu S, Ren H, Wu S T 2013 J. Phys. D Appl. Phys. 46 483001Google Scholar

    [12]

    Xu S, Lin Y J, Wu S T 2009 Opt. Express 17 10499Google Scholar

    [13]

    Zhang Z, Li L, Liu X, Li L, Li Y 2023 Opt. Lasers Eng. 163 107450Google Scholar

    [14]

    Frozanpoor I, Cooke M, Racz Z, Bossons I, Ambukan V, Wood D, Gallant A, Balocco C 2021 J. Micromech. Microeng. 31 055014Google Scholar

    [15]

    Li X, Duan J, Qu Z, Wang J, Ji M, Zhang B 2022 Micromachines 13 117.Google Scholar

    [16]

    Chen Q, Li T, Zhu Y, Yu W, Zhang X 2018 Opt. Express 26 6532.Google Scholar

    [17]

    Lu Y S, Tu H, Xu Y, Jiang H 2013 Appl. Phys. Lett. 103 261113Google Scholar

    [18]

    Shahini A, Xia J, Zhou Z, Zhao Y, Cheng M M C 2016 Langmuir 32 1658Google Scholar

    [19]

    Almoallem Y D, Jiang H 2017 J. Microelectromech. Syst 26 1122Google Scholar

    [20]

    Nakano M, Inaba M, Murakami T, Sakurai M, Suehiro J 2023 IEEE Sens. Lett. 7 1Google Scholar

    [21]

    Edwards A M, Brown C V, Newton M I, McHale G 2018 Curr. Opin. Colloid Interface Sci. 36 28Google Scholar

    [22]

    Yi U C, Kim C J 2006 J. Micromech. Microeng. 16 2053Google Scholar

  • 图 1  基于双柔性线性电极构造的“液滴-叉指平面线墙”模型 (a)双柔性电极线墙排布; (b)疏水层涂覆; (c) “液滴-叉指平面线墙”模型

    Fig. 1.  The “droplet-interdigitated planar line wall” model based on double flexible linear electrodes: (a) Double flexible electrode wire wall arrangement; (b) coating hydrophobic layer; (c) the “droplet-interdigitated planar line wall” model.

    图 2  不同形状电极仿真结果 (a)柔性电极线墙; (b)平面图案叉指电极; (c)柔性电极线墙电场模仿真结果

    Fig. 2.  Simulation results of electrodes with different shapes: (a) Flexible electrode wire wall; (b) planar pattern interdigitated electrodes; (c) simulation results of electric field mode of flexible electrode wire wall.

    图 3  电极表面0—0.5 mm处电场模 (a) 不同线径下电极表面电场模; (b) 不同绝缘层厚度下电极表面电场模

    Fig. 3.  Electric field modes at 0–0.5 mm height on the electrode surface: (a) Electrode surface electric field modes with different wire diameters; (b) electrode surface electric field modes with different insulating layer thickness.

    图 4  液滴形貌变化示意图 (a), (b)分别为初始状态及250 Vrms电压下液滴俯视图; (c), (d)分别为电压升高和下降时液滴侧视形貌

    Fig. 4.  Schematic diagram of droplet morphology changes: (a), (b) Vertical view of droplet in initial state and 250 Vrms voltage respectively; (c), (d) side view of droplet during voltage rise and fall.

    图 5  液滴接触角及余弦差值关系图 (a)液滴前进及后退接触角与理论接触角对比; (b)接触角余弦差值拟合

    Fig. 5.  Schematic diagram of droplet contact angle and cosine difference diagram: (a) The comparison between the forward and backward contact angle of the droplet and the theoretical contact angle; (b) the fitting of the contact angle cosine difference.

  • [1]

    McHale G, Brown, C V, Newton M I, Wells G G, Sampara N 2011 Phys. Rev. Lett. 107 186101Google Scholar

    [2]

    Huhtamäki T, Tian X, Korhonen J T, Ras R H 2018 Nat. Protoc. 13 1521Google Scholar

    [3]

    Armstrong S, McHale G, Ledesma-Aguilar R, Wells G G 2020 Langmuir 36 11332Google Scholar

    [4]

    Kedzierski J, Holihan E 2018 Sci. Robot 3 eaat5643Google Scholar

    [5]

    Renaudot R, Daunay B, Kumemura M, Agache V, Jalabert L, Collard D, Fujita H 2013 Sens. Actuat. B Chem. 177 620Google Scholar

    [6]

    Quinn A, Sedev R, Ralston J 2005 J. Phys. Chem. B 109 6268Google Scholar

    [7]

    Frozanpoor I, Cooke M D, Ambukan V, Gallant A J, Balocco C 2021 Langmuir 37 6414Google Scholar

    [8]

    Mahani M A, Karimvand A N, Naserifar N 2023 J. Sep. Sci. 46 2300257Google Scholar

    [9]

    Jiang L X, Liang F, Huo M X, Ju M Q, Xu J, Ju S, Xu J J, Ju S W, Jin L H, Shen B J 2023 Microelectron. Eng. 282 112100Google Scholar

    [10]

    Huang K, Lu B, Lai J, Chu H K H 2019 IEEE Trans. Biomed. Circuits Syst. 13 1063Google Scholar

    [11]

    Xu S, Ren H, Wu S T 2013 J. Phys. D Appl. Phys. 46 483001Google Scholar

    [12]

    Xu S, Lin Y J, Wu S T 2009 Opt. Express 17 10499Google Scholar

    [13]

    Zhang Z, Li L, Liu X, Li L, Li Y 2023 Opt. Lasers Eng. 163 107450Google Scholar

    [14]

    Frozanpoor I, Cooke M, Racz Z, Bossons I, Ambukan V, Wood D, Gallant A, Balocco C 2021 J. Micromech. Microeng. 31 055014Google Scholar

    [15]

    Li X, Duan J, Qu Z, Wang J, Ji M, Zhang B 2022 Micromachines 13 117.Google Scholar

    [16]

    Chen Q, Li T, Zhu Y, Yu W, Zhang X 2018 Opt. Express 26 6532.Google Scholar

    [17]

    Lu Y S, Tu H, Xu Y, Jiang H 2013 Appl. Phys. Lett. 103 261113Google Scholar

    [18]

    Shahini A, Xia J, Zhou Z, Zhao Y, Cheng M M C 2016 Langmuir 32 1658Google Scholar

    [19]

    Almoallem Y D, Jiang H 2017 J. Microelectromech. Syst 26 1122Google Scholar

    [20]

    Nakano M, Inaba M, Murakami T, Sakurai M, Suehiro J 2023 IEEE Sens. Lett. 7 1Google Scholar

    [21]

    Edwards A M, Brown C V, Newton M I, McHale G 2018 Curr. Opin. Colloid Interface Sci. 36 28Google Scholar

    [22]

    Yi U C, Kim C J 2006 J. Micromech. Microeng. 16 2053Google Scholar

  • [1] 乔小溪, 张向军, 陈平, 田煜, 孟永钢. 微矩形凹槽表面液滴各向异性浸润行为的研究. 物理学报, 2020, 69(3): 034702. doi: 10.7498/aps.69.20191429
    [2] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [3] 叶学民, 李永康, 李春曦. 平衡接触角对受热液滴在水平壁面上铺展特性的影响. 物理学报, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [4] 林林, 袁儒强, 张欣欣, 王晓东. 液滴在梯度微结构表面上的铺展动力学分析. 物理学报, 2015, 64(15): 154705. doi: 10.7498/aps.64.154705
    [5] 周宏伟, 王林伟, 徐升华, 孙祉伟. 微重力条件下与容器连通的毛细管中的毛细流动研究. 物理学报, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [6] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [7] 王奔, 念敬妍, 铁璐, 张亚斌, 郭志光. 稳定超疏水性表面的理论进展. 物理学报, 2013, 62(14): 146801. doi: 10.7498/aps.62.146801
    [8] 曾建邦, 李隆键, 蒋方明. 气泡成核过程的格子Boltzmann方法模拟. 物理学报, 2013, 62(17): 176401. doi: 10.7498/aps.62.176401
    [9] 景蔚萱, 王兵, 牛玲玲, 齐含, 蒋庄德, 陈路加, 周帆. ZnO纳米线薄膜的合成参数、表面形貌和接触角关系研究. 物理学报, 2013, 62(21): 218102. doi: 10.7498/aps.62.218102
    [10] 葛宋, 陈民. 接触角与液固界面热阻关系的分子动力学模拟. 物理学报, 2013, 62(11): 110204. doi: 10.7498/aps.62.110204
    [11] 徐升华, 王林伟, 孙祉伟, 王彩霞. 容器内角处流体界面特性与Surface Evolver程序适用性的研究. 物理学报, 2012, 61(16): 166801. doi: 10.7498/aps.61.166801
    [12] 强洪夫, 刘开, 陈福振. 液滴在气固交界面变形移动问题的光滑粒子流体动力学模拟. 物理学报, 2012, 61(20): 204701. doi: 10.7498/aps.61.204701
    [13] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [14] 曾建邦, 李隆键, 廖全, 蒋方明. 池沸腾中气泡生长过程的格子Boltzmann方法模拟. 物理学报, 2011, 60(6): 066401. doi: 10.7498/aps.60.066401
    [15] 王文霞, 施娟, 邱冰, 李华兵. 用晶格玻尔兹曼方法研究微结构表面的疏水性能. 物理学报, 2010, 59(12): 8371-8376. doi: 10.7498/aps.59.8371
    [16] 王小松, 朱如曾. 固液黏着功的Berthelot平均规则的推广及应用. 物理学报, 2010, 59(11): 8010-8014. doi: 10.7498/aps.59.8010
    [17] 顾春元, 狄勤丰, 施利毅, 吴 非, 王文昌, 余祖斌. 纳米粒子构建表面的超疏水性能实验研究. 物理学报, 2008, 57(5): 3071-3076. doi: 10.7498/aps.57.3071
    [18] 肖剑荣, 徐 慧, 邓超生, 王焕友, 李燕峰. 含氮氟化类金刚石(FN-DLC)薄膜的研究:(Ⅲ)疏水性能分析. 物理学报, 2007, 56(5): 2998-3003. doi: 10.7498/aps.56.2998
    [19] 王 飞, 何 枫. 微管道内两相流数值算法及在电浸润液滴控制中的应用. 物理学报, 2006, 55(3): 1005-1010. doi: 10.7498/aps.55.1005
    [20] 曹治觉, 夏伯丽, 张 云. 论小接触角下实现滴状冷凝的可能性. 物理学报, 2003, 52(10): 2427-2431. doi: 10.7498/aps.52.2427
计量
  • 文章访问数:  2077
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-10-14
  • 上网日期:  2023-11-04
  • 刊出日期:  2024-02-05

/

返回文章
返回