搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测

陈进龙 陶然 李冲 张健磊 付琛 罗景庭

引用本文:
Citation:

基于SnS2/In2O3的气体传感器及其室温下高性能NO2检测

陈进龙, 陶然, 李冲, 张健磊, 付琛, 罗景庭

SnS2/In2O3 based gas sensors and its high performance of detecting NO2 at room temperature

Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo Jing-Ting
PDF
HTML
导出引用
  • NO2是一种有毒气体, 能与空气中的其他有机化合物发生反应, 造成空气污染并对人体有很大的危害. 因此, 需要一种气体传感器来检测NO2. 然而, 传统的NO2传感器很难在室温(25 ℃)下工作. 本研究报告了SnS2/In2O3的室温(25 ℃) NO2气体传感, 采用热注入法和水热法制备了In2O3量子点和SnS2纳米片. 凭借SnS2独特的二维结构, 在其上装饰In2O3, 复合增强了其传感性能, 产品采用X射线衍射(XRD)、扫描电子显微镜(SEM)、高分辨率透射电子显微镜(HR-TEM)和X射线光电子能谱仪(XPS)进行表征. 结果表明, SnS2/In2O3传感器对体积分数为1×10–6 NO2的响应为26.6, 响应和恢复时间分别为146 s和243 s. 由于异质结结构增加了活性位点的数量, 加速了气体的传输, 促进了电荷转移和气体解吸, 提高了NO2气体传感性能. 这种优异的传感性能在NO2检测中具有广阔的应用前景.
    NO2 is a toxic gas that can react with other organic compounds in the air, causing air pollution and posing a significant harm to human health. Therefore, a gas sensor that can detect NO2 is needed. However, conventional NO2 gas sensors are difficult to operate at room temperature (25 ℃). In this work, NO2 gas sensing based on SnS2/In2O3, which can operate at room temperature (25 ℃), is reported. In2O3 quantum dots and SnS2 nanosheets are prepared by the hot-injection method and hydrothermal method. By using the unique two-dimensional structure of SnS2, In2O3 is decorated on it, and the composite enhances its sensing performance. The products are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the composites prepared by 52% In2O3 exhibit the best sensing response. The fabricated sensor shows a response range from 26.6 to NO2 of 1×10–6 in volume fraction, fast response and short recovery time at room temperature (25 ℃). Moreover, this sensor demonstrates excellent reproducibility and selectivity. The heterojunction structure increases the number of active sites and accelerates the gas transport, which promotes charge transfer and gas desorption to improve NO2 gas sensing performance. This excellent sensing performance has a great application prospect in NO2 detection.
      通信作者: 陶然, ran.tao@szu.edu.cn ; 罗景庭, luojt@szu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12104320)、国家重点研发计划(批准号: 2021YFF0603704)、广东省基础与应用领域研究项目(批准号: 2020A1515110561, 2019A1515111199)、广东省研发项目(批准号: 2020B0101040002)、广东省教育厅重点研究项目(批准号: 2020ZDZX2007)、深圳市科技项目(批准号: RCBS20200714114918249, GJHZ20200731095803010, JCYJ20220818095611025, JSGG20201103090801005)和深圳大学创业研究基金 (批准号: QNJS0352)资助的课题.
      Corresponding author: Tao Ran, ran.tao@szu.edu.cn ; Luo Jing-Ting, luojt@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12104320), the National Key Research and Development Program of China (Grant No. 2021YFF0603704), the Research Project in Fundamental and Application Fields of Guangdong Province, China (Grant Nos. 2020A1515110561, 2019A1515111199), the Research and Development Program of Guangdong Province, China (Grant No. 2020B0101040002), the Key Research Program of Education Department for Guangdong Province, China (Grant No. 2020ZDZX2007), the Shenzhen Science & Technology Project, China (Grant Nos. RCBS20200714114918249, GJHZ20200731095803010, JCYJ20220818095611025, JSGG20201103090801005), and the Start-up Research Foundation of Shenzhen University, China (Grant No. QNJS0352).
    [1]

    Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Signorelli S S, Conti G O, Ferrante M 2020 Environ. Res. 191 110129Google Scholar

    [2]

    Cibella F, Cuttitta G, Della Maggiore R, Ruggieri S, Panunzi S, De Gaetano A, Bucchieri S, Drago G, Melis M R, La Grutta S, Viegi G 2015 Environ Res. 138 8Google Scholar

    [3]

    Wang J, Shen H, Xia Y, Komarneni S 2021 Ceram. Int. 47 7353Google Scholar

    [4]

    Xu Y, Zheng L, Yang C, Zheng W, Liu X, Zhang J 2020 ACS Appl. Mater. Interfaces 12 20704Google Scholar

    [5]

    Fang H R, Li S, Zhao H M, Deng J, Wang D, Li J 2022 Sens. Actuators, B 352 131068Google Scholar

    [6]

    Mahajan S, Jagtap S 2020 Appl. Mater. Today 18 100483Google Scholar

    [7]

    Zhang B W, Fang D, Fang X, Zhao H B, Wang D K, Li J H, Wang X H, Wang D B 2021 Rare Met. 41 982Google Scholar

    [8]

    Gao L, Cheng Z, Xiang Q, Zhang Y, Xu J 2015 Sens. Actuators, B 208 436Google Scholar

    [9]

    Wang M S, Wang Y W, Li X J, Ge C X, Hussain S, Liu G W, Qiao G J 2020 Sens. Actuators, B 316 128050Google Scholar

    [10]

    Maeng S, Kim S W, Lee D H, Moon S E, Kim K C, Maiti A 2014 ACS Appl. Mater. Interfaces 6 357Google Scholar

    [11]

    Shah S, Han S, Hussain S, Liu G, Shi T, Shaheen A, Xu Z, Wang M, Qiao G 2022 Ceram. Int. 48 12291Google Scholar

    [12]

    Gu D, Li X, Zhao Y, Wang J 2017 Sens. Actuators, B 244 67Google Scholar

    [13]

    Ahmad I, Zhou Z, Li H Y, Zang S Q 2020 Sens. Actuators, B 304 127379Google Scholar

    [14]

    Liu Y L, Wang L L, Wang H R, Xiong M Y, Yang T Q, Zakharova G S 2016 Sens. Actuators, B 236 529Google Scholar

    [15]

    Hou M, Gao J Y, Yang L, Guo S H, Hu T, Li Y X 2021 Appl. Surf. Sci. 535 147666Google Scholar

    [16]

    Wu J, Zhang D, Cao Y 2018 J. Colloid Interface Sci. 529 556Google Scholar

    [17]

    Patil S P, Patil V L, Vanalakar S A, Shendage S S, Pawar S A, Kim J H, Ryu J, Patil D R, Patil P S 2022 Mater. Lett. 306 130916Google Scholar

    [18]

    Liu H, Su Y, Chen P, Wang Y 2013 J. Mol. Catal. A: Chem. 378 285Google Scholar

    [19]

    Price L S, Parkin I P, Hardy A M E, Clark R J H, Hibbert T G, Molloy K C 1999 Chem. Mater. 11 1792Google Scholar

    [20]

    Kim Y H, Phan D T, Ahn S, Nam K H, Park C M, Jeon K J 2018 Sens. Actuators, B 255 616Google Scholar

    [21]

    He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H 2012 Small 8 2994Google Scholar

    [22]

    Vanalakar S A, Patil V L, Harale N S, Vhanalakar S A, Gang M G, Kim J Y, Patil P S, Kim J H 2015 Sens. Actuators, B 221 1195Google Scholar

    [23]

    Patil S P, Patil V L, Shendage S S, Harale N S, Vanalakar S A, Kim J H, Patil P S 2016 Ceram. Int. 42 16160Google Scholar

    [24]

    Fang H R, Li S, Jiang W J, Zhao H M, Han C S, Li J, Wang G, Zhang Y, Wang S, Deng J, Feng B, Wang D 2022 Sens. Actuators, B 368 132225Google Scholar

    [25]

    Yang B X, Myung N V, Tran T T 2021 Adv. Electron. Mater. 7 2100271Google Scholar

    [26]

    Cheng M, Wu Z, Liu G, Zhao L, Gao Y, Zhang B, Liu F, Yan X, Liang X, Sun P, Lu G 2019 Sens. Actuators, B 291 216Google Scholar

    [27]

    Ferro R, Rodríguez J A, Bertrand P 2008 Thin Solid Films 516 2225Google Scholar

  • 图 1  (a) SnS2, (b) In2O3量子点, (c) SnS2/In2O3的SEM图. (d), (g) SnS2, (e), (h) In2O3, (f), (i) SnS2/In2O3的HR-TEM图和SAED图

    Fig. 1.  SEM images of (a) SnS2 nanoplates, (b) In2O3 QDs and (c) SnS2/In2O3 composites. HR-TEM images and SAED patterns with a 5 nm scale of (d), (g) accordion-like SnS2 nanoplates, (e), (h) In2O3 QDs and (f), (i) SnS2/In2O3 composites.

    图 2  (a) In2O3, SnS2和SnS2/In2O3的XRD图谱; (b) SnS2/In2O3, (c) O 1s, (d) In 3d, (e) Sn 3d, (f) S 2p的XPS能谱

    Fig. 2.  (a) XRD patterns of In2O3, SnS2 and SnS2/In2O3; XPS spectra of (b) SnS2/In2O3, (c) O 1s, (d) In 3d, (e) Sn 3d, (f) S 2p.

    图 3  SnS2纳米片、In2O3量子点和SnS2/In2O3复合材料的气敏性能 (a), (b) 不同SnS2/In2O3比例的复合材料对体积分数为1×10–6 NO2 的响应大小及变化情况; (b) 不同SnS2/In2O3比例的复合材料对体积分数为1×10–6 NO2的响应变化情况; (c) 室温下不同SnS2/In2O3比例的复合材料对体积分数为1×10–6 NO2 响应和恢复时间的变化情况

    Fig. 3.  Gas-sensing properties of SnS2 nanoplates, In2O3 QDs and SnS2/In2O3 composites: (a) Response sensitivity to 1×10–6 NO2 of volume fraction of all composites of different SnS2/In2O3 concentration; (b) variation of response sensitivity to 1×10–6 NO2 of volume fraction of all composites of different SnS2/In2O3 concentration; (c) variation of response and recovery time to 1×10–6 NO2 of volume fraction of all composites of different SnS2/In2O3 concentration.

    图 4  (a) 52%传感器对不同NO2浓度的电阻时间曲线; (b) 52%传感器对不同NO2浓度的线性拟合曲线; (c) 传感器的选择性; (d) 52%传感器对体积分数为8×10–7 NO2的重复性曲线

    Fig. 4.  (a) Resistance time curves of 52% sensor to different NO2 concentrations; (b) the fitting curves of 52% sensor to different NO2 concentrations; (c) selectivity of the sensor; (d) repeatability curves of 52% sensor toward NO2 of volume fraction of 8×10–7.

    图 5  (a), (b) SnS2和In2O3接触前后的能带图; (c) SnS2/In2O3异质结的NO2气体传感机理示意图

    Fig. 5.  (a), (b) Energy band structure diagram of SnS2 and In2O3 before and after contact; (c) schematic diagram of NO2 gas sensing mechanism of the sensor based on SnS2/In2O3 heterostructure.

    表 1  不同传感材料的NO2气敏性能比较

    Table 1.  Performance comparison of NO2 sensors based on different composites.

    Material Temp./℃ NO2 concentration/×10–6 Response Response/recovery time/s Ref.
    SnS2-nanosheets 250 10 2.49 6/40 [20]
    SnO2/SnS2 80 1 1.8 159/297 [12]
    Monolayer MoS2 25 1.2 1.06 >1800 [21]
    In2O3 microspheres 250 20 37 5/20 [22]
    In2O3 thin films 200 5 10 —/— [23]
    In2O3 nanocubes 50 3 10 21/522 [17]
    SnS2/In2O3 25 1 26.6 146/243 This work
    下载: 导出CSV
  • [1]

    Copat C, Cristaldi A, Fiore M, Grasso A, Zuccarello P, Signorelli S S, Conti G O, Ferrante M 2020 Environ. Res. 191 110129Google Scholar

    [2]

    Cibella F, Cuttitta G, Della Maggiore R, Ruggieri S, Panunzi S, De Gaetano A, Bucchieri S, Drago G, Melis M R, La Grutta S, Viegi G 2015 Environ Res. 138 8Google Scholar

    [3]

    Wang J, Shen H, Xia Y, Komarneni S 2021 Ceram. Int. 47 7353Google Scholar

    [4]

    Xu Y, Zheng L, Yang C, Zheng W, Liu X, Zhang J 2020 ACS Appl. Mater. Interfaces 12 20704Google Scholar

    [5]

    Fang H R, Li S, Zhao H M, Deng J, Wang D, Li J 2022 Sens. Actuators, B 352 131068Google Scholar

    [6]

    Mahajan S, Jagtap S 2020 Appl. Mater. Today 18 100483Google Scholar

    [7]

    Zhang B W, Fang D, Fang X, Zhao H B, Wang D K, Li J H, Wang X H, Wang D B 2021 Rare Met. 41 982Google Scholar

    [8]

    Gao L, Cheng Z, Xiang Q, Zhang Y, Xu J 2015 Sens. Actuators, B 208 436Google Scholar

    [9]

    Wang M S, Wang Y W, Li X J, Ge C X, Hussain S, Liu G W, Qiao G J 2020 Sens. Actuators, B 316 128050Google Scholar

    [10]

    Maeng S, Kim S W, Lee D H, Moon S E, Kim K C, Maiti A 2014 ACS Appl. Mater. Interfaces 6 357Google Scholar

    [11]

    Shah S, Han S, Hussain S, Liu G, Shi T, Shaheen A, Xu Z, Wang M, Qiao G 2022 Ceram. Int. 48 12291Google Scholar

    [12]

    Gu D, Li X, Zhao Y, Wang J 2017 Sens. Actuators, B 244 67Google Scholar

    [13]

    Ahmad I, Zhou Z, Li H Y, Zang S Q 2020 Sens. Actuators, B 304 127379Google Scholar

    [14]

    Liu Y L, Wang L L, Wang H R, Xiong M Y, Yang T Q, Zakharova G S 2016 Sens. Actuators, B 236 529Google Scholar

    [15]

    Hou M, Gao J Y, Yang L, Guo S H, Hu T, Li Y X 2021 Appl. Surf. Sci. 535 147666Google Scholar

    [16]

    Wu J, Zhang D, Cao Y 2018 J. Colloid Interface Sci. 529 556Google Scholar

    [17]

    Patil S P, Patil V L, Vanalakar S A, Shendage S S, Pawar S A, Kim J H, Ryu J, Patil D R, Patil P S 2022 Mater. Lett. 306 130916Google Scholar

    [18]

    Liu H, Su Y, Chen P, Wang Y 2013 J. Mol. Catal. A: Chem. 378 285Google Scholar

    [19]

    Price L S, Parkin I P, Hardy A M E, Clark R J H, Hibbert T G, Molloy K C 1999 Chem. Mater. 11 1792Google Scholar

    [20]

    Kim Y H, Phan D T, Ahn S, Nam K H, Park C M, Jeon K J 2018 Sens. Actuators, B 255 616Google Scholar

    [21]

    He Q, Zeng Z, Yin Z, Li H, Wu S, Huang X, Zhang H 2012 Small 8 2994Google Scholar

    [22]

    Vanalakar S A, Patil V L, Harale N S, Vhanalakar S A, Gang M G, Kim J Y, Patil P S, Kim J H 2015 Sens. Actuators, B 221 1195Google Scholar

    [23]

    Patil S P, Patil V L, Shendage S S, Harale N S, Vanalakar S A, Kim J H, Patil P S 2016 Ceram. Int. 42 16160Google Scholar

    [24]

    Fang H R, Li S, Jiang W J, Zhao H M, Han C S, Li J, Wang G, Zhang Y, Wang S, Deng J, Feng B, Wang D 2022 Sens. Actuators, B 368 132225Google Scholar

    [25]

    Yang B X, Myung N V, Tran T T 2021 Adv. Electron. Mater. 7 2100271Google Scholar

    [26]

    Cheng M, Wu Z, Liu G, Zhao L, Gao Y, Zhang B, Liu F, Yan X, Liang X, Sun P, Lu G 2019 Sens. Actuators, B 291 216Google Scholar

    [27]

    Ferro R, Rodríguez J A, Bertrand P 2008 Thin Solid Films 516 2225Google Scholar

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 董逸蒙, 孙永娇, 侯煜晨, 王炳亮, 陆志远, 张文栋, 胡杰. SnO2/ZnS异质结气体传感器的制备及其室温NO2敏感特性. 物理学报, 2023, 72(16): 160701. doi: 10.7498/aps.72.20230735
    [3] 卞晓鸽, 周胜, 张磊, 何天博, 李劲松. 基于标准样品回归算法和腔增强光谱的NO2检测方法. 物理学报, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [4] 卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹. 双轴向应变对单层GeSe气体传感特性的影响. 物理学报, 2020, 69(19): 196801. doi: 10.7498/aps.69.20200539
    [5] 刘益, 钱正洪, 朱建国. 室温磁性斯格明子材料及其应用研究进展. 物理学报, 2020, 69(23): 231201. doi: 10.7498/aps.69.20200984
    [6] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [7] 刘志福, 李培, 程铁栋, 黄文. 铁掺杂多孔氧化铟的NO2传感特性. 物理学报, 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [8] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波. 水合肼还原的氧化石墨烯吸附NO2的实验研究. 物理学报, 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [9] 赵博硕, 强晓永, 秦岳, 胡明. 氧化钨纳米线气敏传感器的制备及其室温NO2敏感特性. 物理学报, 2018, 67(5): 058101. doi: 10.7498/aps.67.20172236
    [10] 李文静, 光耀, 于国强, 万蔡华, 丰家峰, 韩秀峰. 薄膜异质结中磁性斯格明子的相关研究. 物理学报, 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [11] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [12] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法. 物理学报, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [13] 刘进, 司福祺, 周海金, 赵敏杰, 窦科, 王煜, 刘文清. 机载成像差分吸收光谱技术测量区域NO2二维分布研究. 物理学报, 2015, 64(3): 034217. doi: 10.7498/aps.64.034217
    [14] 秦玉香, 刘凯轩, 刘长雨, 孙学斌. 钒掺杂W18O49纳米线的室温p型电导与NO2敏感性能. 物理学报, 2013, 62(20): 208104. doi: 10.7498/aps.62.208104
    [15] 刘研研, 董磊, 武红鹏, 郑华丹, 马维光, 张雷, 尹王保, 贾锁堂. 全光型石英增强光声光谱. 物理学报, 2013, 62(22): 220701. doi: 10.7498/aps.62.220701
    [16] 王婷, 王普才, 余环, 张兴赢, 周斌, 司福祺, 王珊珊, 白文广, 周海金, 赵恒. 多轴差分吸收光谱仪反演大气NO2的比对试验. 物理学报, 2013, 62(5): 054206. doi: 10.7498/aps.62.054206
    [17] 石立超, 张巍, 金杰, 黄翊东, 彭江得. 中红外空心Bragg光纤的制备及在气体传感中的应用. 物理学报, 2012, 61(5): 054214. doi: 10.7498/aps.61.054214
    [18] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究. 物理学报, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [20] 张贵银, 靳一东. NO2分子的光学-光学双色双共振多光子离化谱. 物理学报, 2008, 57(1): 132-136. doi: 10.7498/aps.57.132
计量
  • 文章访问数:  2289
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-23
  • 修回日期:  2024-03-24
  • 上网日期:  2024-03-27
  • 刊出日期:  2024-05-20

/

返回文章
返回