-
里德伯原子的高极化率可以实现电磁场的多维度参数测量. 本文利用室温里德伯原子构建原子天线, 基于原子天线将低频电场幅度信息转化为强度信息, 从而实现低频电场的参数测量. 实验采用双光子激发制备铯原子里德伯态, 通过阶梯型电磁感应透明(electromagnetically induced transparency, EIT)光谱实现里德伯原子量子态的检测, 基于内置电极技术在室温原子气室导入kHz频段低频电场. 电场中里德伯原子的Stark频移会在EIT过程导致双光子失谐, 从而引起EIT光谱频移和强度变化. 在弱电场条件下, EIT光谱频移可以忽略, EIT透射强度与输入低频电场强度近似为线性关系, 基于该效应可以实现低频电场的波形、幅度、频率等参数测量.The high polarizability of Rydberg atoms enables the multi-parameters measurement of electromagnetic fields. In this paper, we report on an atomic antenna based on Rydberg atoms in a room temperature vapor cell. The EIT is a destructive interference spectroscopy with a narrow linewidth and can be used to detect small electric fields through Autler-Townes splitting or Stark shifts. In our experiments, we employ cascade-type two-photon excitation electromagnetically induced transparency (EIT) spectroscopy to measure the shift of the Rydberg energy level. We introduce a low-frequency electric field (~kHz frequency) using a built-in electrode technique in the cesium cell. The interaction between the Rydberg atom and electric field induces the Stark shifts, where the amplitude of the electric field is converted into corresponding two-photon detuning by the EIT effect. Furthermore, the amplitude of the low-frequency electric field is converted into an intensity signal of EIT probe beam. Under weak field conditions, it is an approximate linear relationship between EIT transmission signal and input electric field amplitude, enabling measurement of waveform, amplitude, and frequency. We have demonstrated optical measurements of low-frequency electric field using Rydberg atoms. By increasing the power of probe beam and coupling beam, the EIT can increase the response bandwidth from ~MHz to hundreds of MHz. This provides a scalable approach for measuring high-frequency electric fields.
-
Keywords:
- Rydberg atom /
- electromagnetically induced transparency /
- low-frequency electric field /
- waveform
[1] 张星, 白强, 夏善红, 郑凤杰, 陈绍凤 2006 仪器仪表学报 27 1433Google Scholar
Zhang X, Bai Q, Xia S H, Zheng F J, Chen S F 2006 J. Instrument. Meter. 27 1433Google Scholar
[2] 熊兰, 宋道军, 张又力, 唐涛, 肖波, 杨帆, 何为 2011 高压电器 47 97Google Scholar
Xiong L, Song D J, Zhang Y L, Tang T, Xiao B, Yang F, He W 2011 High Volt. Electr. Appl. 47 97Google Scholar
[3] 汪金刚, 林伟, 李健, 毛长斌, 何为, 王平 2010 传感器与微系统 29 21Google Scholar
Wang J G, Lin W, Li J, Mao C B, He W, Wang P 2010 Transducer and Microsystem Technologies 29 21Google Scholar
[4] 韦明杰, 张恒旭, 石访, 谢伟, 张勇, 方陈 2019 电力系统自动化 43 148
Wei M J, Zhang H X, Shi F, Xie W, Zhang Y, Fang C 2019 Power System Automation 43 148
[5] 肖德, 马琪, 谢轩, 郑琪, 张志 2018 传感器 18 1053Google Scholar
Xiao D, Ma Q, Xie Y, Zheng Q, Zhang Z 2018 Sensors 18 1053Google Scholar
[6] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar
[7] Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar
[8] Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020Google Scholar
[9] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017Google Scholar
[10] Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar
[11] He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120Google Scholar
[12] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar
[13] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar
[14] Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030
[15] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar
[16] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447Google Scholar
[17] Cai M H, You S H, Zhang S S, Xu Z S, Liu H P 2023 Appl. Phys. Lett. 122 161103Google Scholar
[18] Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nature Phys. 4 890Google Scholar
[19] Viteau M, Radogostowicz J, Bason M G, Malossi N, Ciampini D, Morsch O, Arimondo E 2011 Opt. Express 19 6007Google Scholar
[20] Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar
[21] Carter J D, Cherry O, Martin J D D 2012 Phys. Rev. A 86 053401Google Scholar
[22] Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, Biedermann G W 2014 Phys. Rev. A 89 033416Google Scholar
[23] Ma L, Paradis E, Raithel G 2020 Opt. Express 28 3676Google Scholar
[24] Bai J, Liu S, Wang J, He J, Wang J 2019 IEEE J. Sel. Top. Quant. 26 1Google Scholar
[25] 杜艺杰, 丛楠, 何军, 杨仁福 2022 导航与控制 21 192
Du Y J, Cong N, He J, Yang R F 2022 Nav. Ctrl. 21 192
[26] Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M, Jia S T 2023 Opt. Express 31 29228Google Scholar
[27] Ding D S, Busche H, Shi B S, Guo G C, Adams C S 2020 Phys. Rev. X 10 021023Google Scholar
[28] Manzano D 2020 Aip Adv. 10 025106Google Scholar
[29] Noh H R, Moon H S 2009 Phys. Rev. A 80 022509Google Scholar
[30] Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604Google Scholar
-
图 4 铯原子光谱实验装置图, 其中λ/2为半波片, PBS为偏振分光棱镜, L为透镜, DM1和DM4分别为852 nm高反射率(HR)和509 nm高透射率(HT)双色镜, DM2和DM3分别为852 nm高透射率(HT)和509 nm高反射率(HR)双色镜, PD为光电探测器, SAS为饱和吸收光谱, D为垃圾堆
Fig. 4. Experimental set-up. λ/2 represents half-wave plate, PBS represents polarizing beam splitter cube, L represents Lens, DM1 and DM4 represent 852 nm high reflectivity (HR) and 509 nm high transmissivity (HT) dichroic mirror, DM2 and DM3 represent 852 nm high transmissivity (HT) and 509 nm high reflectivity (HR) dichroic mirror, PD represent photodiode, SAS represents cesium atomic saturation absorption spectroscopy, D represents optical dump.
图 5 正弦波波形测量 (a)频率为1 kHz高电平为68 mV, 低电平为14 mV; (b)频率为10 kHz高电平为67 mV, 低电平为17 mV
Fig. 5. Waveform recognition of sine wave: (a) Reference waveform and measurement waveform at a frequency of 1 kHz, high-level 68 mV, low-level 14 mV; (b) reference waveform and measurement waveform at a frequency of 10 kHz, high-level 67 mV, low-level 17 mV.
-
[1] 张星, 白强, 夏善红, 郑凤杰, 陈绍凤 2006 仪器仪表学报 27 1433Google Scholar
Zhang X, Bai Q, Xia S H, Zheng F J, Chen S F 2006 J. Instrument. Meter. 27 1433Google Scholar
[2] 熊兰, 宋道军, 张又力, 唐涛, 肖波, 杨帆, 何为 2011 高压电器 47 97Google Scholar
Xiong L, Song D J, Zhang Y L, Tang T, Xiao B, Yang F, He W 2011 High Volt. Electr. Appl. 47 97Google Scholar
[3] 汪金刚, 林伟, 李健, 毛长斌, 何为, 王平 2010 传感器与微系统 29 21Google Scholar
Wang J G, Lin W, Li J, Mao C B, He W, Wang P 2010 Transducer and Microsystem Technologies 29 21Google Scholar
[4] 韦明杰, 张恒旭, 石访, 谢伟, 张勇, 方陈 2019 电力系统自动化 43 148
Wei M J, Zhang H X, Shi F, Xie W, Zhang Y, Fang C 2019 Power System Automation 43 148
[5] 肖德, 马琪, 谢轩, 郑琪, 张志 2018 传感器 18 1053Google Scholar
Xiao D, Ma Q, Xie Y, Zheng Q, Zhang Z 2018 Sensors 18 1053Google Scholar
[6] Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar
[7] Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar
[8] Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020Google Scholar
[9] Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017Google Scholar
[10] Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar
[11] He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120Google Scholar
[12] Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar
[13] Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar
[14] Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030
[15] Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar
[16] Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447Google Scholar
[17] Cai M H, You S H, Zhang S S, Xu Z S, Liu H P 2023 Appl. Phys. Lett. 122 161103Google Scholar
[18] Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nature Phys. 4 890Google Scholar
[19] Viteau M, Radogostowicz J, Bason M G, Malossi N, Ciampini D, Morsch O, Arimondo E 2011 Opt. Express 19 6007Google Scholar
[20] Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar
[21] Carter J D, Cherry O, Martin J D D 2012 Phys. Rev. A 86 053401Google Scholar
[22] Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, Biedermann G W 2014 Phys. Rev. A 89 033416Google Scholar
[23] Ma L, Paradis E, Raithel G 2020 Opt. Express 28 3676Google Scholar
[24] Bai J, Liu S, Wang J, He J, Wang J 2019 IEEE J. Sel. Top. Quant. 26 1Google Scholar
[25] 杜艺杰, 丛楠, 何军, 杨仁福 2022 导航与控制 21 192
Du Y J, Cong N, He J, Yang R F 2022 Nav. Ctrl. 21 192
[26] Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M, Jia S T 2023 Opt. Express 31 29228Google Scholar
[27] Ding D S, Busche H, Shi B S, Guo G C, Adams C S 2020 Phys. Rev. X 10 021023Google Scholar
[28] Manzano D 2020 Aip Adv. 10 025106Google Scholar
[29] Noh H R, Moon H S 2009 Phys. Rev. A 80 022509Google Scholar
[30] Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604Google Scholar
计量
- 文章访问数: 2522
- PDF下载量: 153
- 被引次数: 0