搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于里德伯原子天线的低频电场波形测量

张学超 乔佳慧 刘瑶 苏楠 刘智慧 蔡婷 何军 赵延霆 王军民

引用本文:
Citation:

基于里德伯原子天线的低频电场波形测量

张学超, 乔佳慧, 刘瑶, 苏楠, 刘智慧, 蔡婷, 何军, 赵延霆, 王军民

Measurement of low-frequency electric field waveform by Rydberg atom-based sensor

Zhang Xue-Chao, Qiao Jia-Hui, Liu Yao, Su Nan, Liu Zhi-Hui, Cai Ting, He Jun, Zhao Yan-Ting, Wang Jun-Min
PDF
HTML
导出引用
  • 里德伯原子的高极化率可以实现电磁场的多维度参数测量. 本文利用室温里德伯原子构建原子天线, 基于原子天线将低频电场幅度信息转化为强度信息, 从而实现低频电场的参数测量. 实验采用双光子激发制备铯原子里德伯态, 通过阶梯型电磁感应透明(electromagnetically induced transparency, EIT)光谱实现里德伯原子量子态的检测, 基于内置电极技术在室温原子气室导入kHz频段低频电场. 电场中里德伯原子的Stark频移会在EIT过程导致双光子失谐, 从而引起EIT光谱频移和强度变化. 在弱电场条件下, EIT光谱频移可以忽略, EIT透射强度与输入低频电场强度近似为线性关系, 基于该效应可以实现低频电场的波形、幅度、频率等参数测量.
    The high polarizability of Rydberg atoms enables the multi-parameters measurement of electromagnetic fields. In this paper, we report on an atomic antenna based on Rydberg atoms in a room temperature vapor cell. The EIT is a destructive interference spectroscopy with a narrow linewidth and can be used to detect small electric fields through Autler-Townes splitting or Stark shifts. In our experiments, we employ cascade-type two-photon excitation electromagnetically induced transparency (EIT) spectroscopy to measure the shift of the Rydberg energy level. We introduce a low-frequency electric field (~kHz frequency) using a built-in electrode technique in the cesium cell. The interaction between the Rydberg atom and electric field induces the Stark shifts, where the amplitude of the electric field is converted into corresponding two-photon detuning by the EIT effect. Furthermore, the amplitude of the low-frequency electric field is converted into an intensity signal of EIT probe beam. Under weak field conditions, it is an approximate linear relationship between EIT transmission signal and input electric field amplitude, enabling measurement of waveform, amplitude, and frequency. We have demonstrated optical measurements of low-frequency electric field using Rydberg atoms. By increasing the power of probe beam and coupling beam, the EIT can increase the response bandwidth from ~MHz to hundreds of MHz. This provides a scalable approach for measuring high-frequency electric fields.
      通信作者: 何军, hejun@sxu.edu.cn ; 赵延霆, zhaoyt@sxu.edu.cn
    • 基金项目: 省级大学生创新创业训练计划(批准号: S202210108027)和国家电网公司科技项目(批准号: 5700-202127198A-0-0-00)资助的课题.
      Corresponding author: He Jun, hejun@sxu.edu.cn ; Zhao Yan-Ting, zhaoyt@sxu.edu.cn
    • Funds: Project supported by National/Shanxi Provincial/Shanxi University’s Training Program of Innovation and Entrepreneurship for Undergraduates (Grant No. S202210108027) and the Science and Technology Project of SGCC, China (Grant No. 5700-202127198A-0-0-00).
    [1]

    张星, 白强, 夏善红, 郑凤杰, 陈绍凤 2006 仪器仪表学报 27 1433Google Scholar

    Zhang X, Bai Q, Xia S H, Zheng F J, Chen S F 2006 J. Instrument. Meter. 27 1433Google Scholar

    [2]

    熊兰, 宋道军, 张又力, 唐涛, 肖波, 杨帆, 何为 2011 高压电器 47 97Google Scholar

    Xiong L, Song D J, Zhang Y L, Tang T, Xiao B, Yang F, He W 2011 High Volt. Electr. Appl. 47 97Google Scholar

    [3]

    汪金刚, 林伟, 李健, 毛长斌, 何为, 王平 2010 传感器与微系统 29 21Google Scholar

    Wang J G, Lin W, Li J, Mao C B, He W, Wang P 2010 Transducer and Microsystem Technologies 29 21Google Scholar

    [4]

    韦明杰, 张恒旭, 石访, 谢伟, 张勇, 方陈 2019 电力系统自动化 43 148

    Wei M J, Zhang H X, Shi F, Xie W, Zhang Y, Fang C 2019 Power System Automation 43 148

    [5]

    肖德, 马琪, 谢轩, 郑琪, 张志 2018 传感器 18 1053Google Scholar

    Xiao D, Ma Q, Xie Y, Zheng Q, Zhang Z 2018 Sensors 18 1053Google Scholar

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [7]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar

    [8]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020Google Scholar

    [9]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017Google Scholar

    [10]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar

    [11]

    He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120Google Scholar

    [12]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [13]

    Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar

    [14]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030

    [15]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [16]

    Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447Google Scholar

    [17]

    Cai M H, You S H, Zhang S S, Xu Z S, Liu H P 2023 Appl. Phys. Lett. 122 161103Google Scholar

    [18]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nature Phys. 4 890Google Scholar

    [19]

    Viteau M, Radogostowicz J, Bason M G, Malossi N, Ciampini D, Morsch O, Arimondo E 2011 Opt. Express 19 6007Google Scholar

    [20]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [21]

    Carter J D, Cherry O, Martin J D D 2012 Phys. Rev. A 86 053401Google Scholar

    [22]

    Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, Biedermann G W 2014 Phys. Rev. A 89 033416Google Scholar

    [23]

    Ma L, Paradis E, Raithel G 2020 Opt. Express 28 3676Google Scholar

    [24]

    Bai J, Liu S, Wang J, He J, Wang J 2019 IEEE J. Sel. Top. Quant. 26 1Google Scholar

    [25]

    杜艺杰, 丛楠, 何军, 杨仁福 2022 导航与控制 21 192

    Du Y J, Cong N, He J, Yang R F 2022 Nav. Ctrl. 21 192

    [26]

    Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M, Jia S T 2023 Opt. Express 31 29228Google Scholar

    [27]

    Ding D S, Busche H, Shi B S, Guo G C, Adams C S 2020 Phys. Rev. X 10 021023Google Scholar

    [28]

    Manzano D 2020 Aip Adv. 10 025106Google Scholar

    [29]

    Noh H R, Moon H S 2009 Phys. Rev. A 80 022509Google Scholar

    [30]

    Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604Google Scholar

  • 图 1  (a)铯原子里德伯跃迁能级图; (b)理论模拟EIT图

    Fig. 1.  (a) Rydberg transition energy level diagram of cesium atom; (b) EIT diagram of theoretical simulation.

    图 2  EIT信号强度随场强变化的数值模拟

    Fig. 2.  Numerical simulation of EIT signal strength variation with field strength.

    图 3  数值模拟波形 (a)正弦波; (b)方波; (c) sinx/x

    Fig. 3.  Numerical simulation waveform: (a) Sine wave; (b) square wave; (c) sinx/x.

    图 4  铯原子光谱实验装置图, 其中λ/2为半波片, PBS为偏振分光棱镜, L为透镜, DM1和DM4分别为852 nm高反射率(HR)和509 nm高透射率(HT)双色镜, DM2和DM3分别为852 nm高透射率(HT)和509 nm高反射率(HR)双色镜, PD为光电探测器, SAS为饱和吸收光谱, D为垃圾堆

    Fig. 4.  Experimental set-up. λ/2 represents half-wave plate, PBS represents polarizing beam splitter cube, L represents Lens, DM1 and DM4 represent 852 nm high reflectivity (HR) and 509 nm high transmissivity (HT) dichroic mirror, DM2 and DM3 represent 852 nm high transmissivity (HT) and 509 nm high reflectivity (HR) dichroic mirror, PD represent photodiode, SAS represents cesium atomic saturation absorption spectroscopy, D represents optical dump.

    图 5  正弦波波形测量 (a)频率为1 kHz高电平为68 mV, 低电平为14 mV; (b)频率为10 kHz高电平为67 mV, 低电平为17 mV

    Fig. 5.  Waveform recognition of sine wave: (a) Reference waveform and measurement waveform at a frequency of 1 kHz, high-level 68 mV, low-level 14 mV; (b) reference waveform and measurement waveform at a frequency of 10 kHz, high-level 67 mV, low-level 17 mV.

    图 6  频率为1 kHz, 高电平100 mV低电平0 mV时的参考波形和测量波形 (a)高斯函数; (b)洛伦兹函数; (c) sinx/x; (d)指数上升函数

    Fig. 6.  Reference waveform and measurement waveform at a frequency of 1 kHz, high-level 100 mV, low-level 0 mV: (a) Gaussian; (b) Lorentz; (c) sinx/x; (d) exponential rise.

    图 7  多种波形测量, 频率为10 kHz, 高电平为100 mV, 低电平为0 mV (a) 高斯函数; (b)洛伦兹函数; (c) sinx/x函数; (d)指数上升函数

    Fig. 7.  Reference waveform and measurement waveform at a frequency of 10 kHz, high-level 100 mV, low-level 0 mV: (a) Gaussian; (b) Lorentz; (c) sinx/x; (d) exponential rise.

  • [1]

    张星, 白强, 夏善红, 郑凤杰, 陈绍凤 2006 仪器仪表学报 27 1433Google Scholar

    Zhang X, Bai Q, Xia S H, Zheng F J, Chen S F 2006 J. Instrument. Meter. 27 1433Google Scholar

    [2]

    熊兰, 宋道军, 张又力, 唐涛, 肖波, 杨帆, 何为 2011 高压电器 47 97Google Scholar

    Xiong L, Song D J, Zhang Y L, Tang T, Xiao B, Yang F, He W 2011 High Volt. Electr. Appl. 47 97Google Scholar

    [3]

    汪金刚, 林伟, 李健, 毛长斌, 何为, 王平 2010 传感器与微系统 29 21Google Scholar

    Wang J G, Lin W, Li J, Mao C B, He W, Wang P 2010 Transducer and Microsystem Technologies 29 21Google Scholar

    [4]

    韦明杰, 张恒旭, 石访, 谢伟, 张勇, 方陈 2019 电力系统自动化 43 148

    Wei M J, Zhang H X, Shi F, Xie W, Zhang Y, Fang C 2019 Power System Automation 43 148

    [5]

    肖德, 马琪, 谢轩, 郑琪, 张志 2018 传感器 18 1053Google Scholar

    Xiao D, Ma Q, Xie Y, Zheng Q, Zhang Z 2018 Sensors 18 1053Google Scholar

    [6]

    Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, Shaffer J P 2012 Nat. Phys. 8 819Google Scholar

    [7]

    Zhang L J, Bao S X, Zhang H, Raithel G, Zhao J M, Xiao L T, Jia S T 2018 Opt. Express 26 29931Google Scholar

    [8]

    Tanasittikosol M, Pritchard J D, Maxwell D, Gauguet A, Weatherill K J, Potvliege R M, Adams C S 2011 J. Phys. B 44 184020Google Scholar

    [9]

    Miller S A, Anderson D A, Raithel G 2016 New J. Phys. 18 053017Google Scholar

    [10]

    Bason M G, Tanasittikosol M, Sargsyan A, Mohapatra A K, Sarkisyan D, Potvliege R M, Adams C S 2010 New J. Phys. 12 065015Google Scholar

    [11]

    He J, Liu Q, Yang Z, Niu Q Q, Ban X J, Wang J M 2021 Phys. Rev. A 104 063120Google Scholar

    [12]

    Meyer D H, Kunz P D, Cox K C 2021 Phys. Rev. Appl. 15 014053Google Scholar

    [13]

    Kumar S, Fan H, Kübler H, Jahangiri A J, Shaffer J P 2017 Opt. Express 25 8625Google Scholar

    [14]

    Gordon J A, Simons M T, Haddab A H, Holloway C L 2019 AIP Adv. 9 045030

    [15]

    Jing M Y, Hu Y, Ma J, Zhang H, Zhang L J, Xiao L T, Jia S T 2020 Nat. Phys. 16 911Google Scholar

    [16]

    Ding D S, Liu Z K, Shi B S, Guo G C, Mølmer K, Adams C S 2022 Nat. Phys. 18 1447Google Scholar

    [17]

    Cai M H, You S H, Zhang S S, Xu Z S, Liu H P 2023 Appl. Phys. Lett. 122 161103Google Scholar

    [18]

    Mohapatra A K, Bason M G, Butscher B, Weatherill K J, Adams C S 2008 Nature Phys. 4 890Google Scholar

    [19]

    Viteau M, Radogostowicz J, Bason M G, Malossi N, Ciampini D, Morsch O, Arimondo E 2011 Opt. Express 19 6007Google Scholar

    [20]

    Jau Y Y, Carter T 2020 Phys. Rev. Appl. 13 054034Google Scholar

    [21]

    Carter J D, Cherry O, Martin J D D 2012 Phys. Rev. A 86 053401Google Scholar

    [22]

    Hankin A M, Jau Y Y, Parazzoli L P, Chou C W, Armstrong D J, Landahl A J, Biedermann G W 2014 Phys. Rev. A 89 033416Google Scholar

    [23]

    Ma L, Paradis E, Raithel G 2020 Opt. Express 28 3676Google Scholar

    [24]

    Bai J, Liu S, Wang J, He J, Wang J 2019 IEEE J. Sel. Top. Quant. 26 1Google Scholar

    [25]

    杜艺杰, 丛楠, 何军, 杨仁福 2022 导航与控制 21 192

    Du Y J, Cong N, He J, Yang R F 2022 Nav. Ctrl. 21 192

    [26]

    Li L, Jiao Y C, Hu J L, Li H Q, Shi M, Zhao J M, Jia S T 2023 Opt. Express 31 29228Google Scholar

    [27]

    Ding D S, Busche H, Shi B S, Guo G C, Adams C S 2020 Phys. Rev. X 10 021023Google Scholar

    [28]

    Manzano D 2020 Aip Adv. 10 025106Google Scholar

    [29]

    Noh H R, Moon H S 2009 Phys. Rev. A 80 022509Google Scholar

    [30]

    Anisimov P M, Dowling J P, Sanders B C 2011 Phys. Rev. Lett. 107 163604Google Scholar

  • [1] 夏刚, 张亚鹏, 汤婧雯, 李春燕, 吴春旺, 张杰, 周艳丽. 电磁感应透明条件下里德伯原子系统的亚稳动力学. 物理学报, 2024, 73(10): 104203. doi: 10.7498/aps.73.20240233
    [2] 刘智慧, 刘逍娜, 何军, 刘瑶, 苏楠, 蔡婷, 杜艺杰, 王杰英, 裴栋梁, 王军民. 里德伯原子幻零波长. 物理学报, 2024, 73(13): 130701. doi: 10.7498/aps.73.20240397
    [3] 韩玉龙, 刘邦, 张侃, 孙金芳, 孙辉, 丁冬生. 射频电场缀饰下铯Rydberg原子的电磁感应透明光谱. 物理学报, 2024, 73(11): 113201. doi: 10.7498/aps.73.20240355
    [4] 周飞, 贾凤东, 刘修彬, 张剑, 谢锋, 钟志萍. 基于冷里德堡原子电磁感应透明的微波电场测量. 物理学报, 2023, 72(4): 045204. doi: 10.7498/aps.72.20222059
    [5] 白健男, 韩嵩, 陈建弟, 韩海燕, 严冬. 超级里德伯原子间的稳态关联集体激发与量子纠缠. 物理学报, 2023, 72(12): 124202. doi: 10.7498/aps.72.20222030
    [6] 刘瑶, 何军, 苏楠, 蔡婷, 刘智慧, 刁文婷, 王军民. 用于铯原子里德伯态激发的509 nm波长脉冲激光系统. 物理学报, 2023, 72(6): 060303. doi: 10.7498/aps.72.20222286
    [7] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应. 物理学报, 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [8] 王勤霞, 王志辉, 刘岩鑫, 管世军, 何军, 张鹏飞, 李刚, 张天才. 腔增强热里德伯原子光谱. 物理学报, 2023, 72(8): 087801. doi: 10.7498/aps.72.20230039
    [9] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, 2022, 71(17): 170702. doi: 10.7498/aps.71.20220594
    [10] 吴逢川, 林沂, 武博, 付云起. 里德伯原子的射频脉冲响应特性. 物理学报, 2022, 71(20): 207402. doi: 10.7498/aps.71.20220972
    [11] 高洁, 杭超. 里德伯原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 133202. doi: 10.7498/aps.71.20220456
    [12] 金钊, 李芮, 公卫江, 祁阳, 张寿, 苏石磊. 基于共振里德伯偶极-偶极相互作用的双反阻塞机制及量子逻辑门的实现. 物理学报, 2021, 70(13): 134202. doi: 10.7498/aps.70.20210059
    [13] 高小苹, 梁景睿, 刘堂昆, 李宏, 刘继兵. 巨梯型四能级里德伯原子系统透射光谱性质的调控. 物理学报, 2021, 70(11): 113201. doi: 10.7498/aps.70.20202077
    [14] 赵嘉栋, 张好, 杨文广, 赵婧华, 景明勇, 张临杰. 基于里德伯原子电磁诱导透明效应的光脉冲减速. 物理学报, 2021, 70(10): 103201. doi: 10.7498/aps.70.20210102
    [15] 严冬, 王彬彬, 白文杰, 刘兵, 杜秀国, 任春年. 里德伯电磁感应透明中的相位. 物理学报, 2019, 68(8): 084203. doi: 10.7498/aps.68.20181938
    [16] 樊佳蓓, 焦月春, 郝丽萍, 薛咏梅, 赵建明, 贾锁堂. Rydberg原子的微波电磁感应透明-Autler-Townes光谱. 物理学报, 2018, 67(9): 093201. doi: 10.7498/aps.67.20172645
    [17] 张秦榕, 王彬彬, 张孟龙, 严冬. 稀薄里德伯原子气体中的两体纠缠. 物理学报, 2018, 67(3): 034202. doi: 10.7498/aps.67.20172052
    [18] 闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂. 基于量子相干效应的无芯射频识别标签的空间散射场测量. 物理学报, 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [19] 赵建明, 张临杰, 李昌勇, 贾锁堂. 里德伯原子向超冷等离子体的自发转化. 物理学报, 2008, 57(5): 2895-2898. doi: 10.7498/aps.57.2895
    [20] 刘仁红, 蔡希洁, 杨 琳, 张志祥, 毕纪军. “神光Ⅱ”装置激光输出波形的数值模拟. 物理学报, 2004, 53(12): 4189-4193. doi: 10.7498/aps.53.4189
计量
  • 文章访问数:  2522
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-09
  • 修回日期:  2023-12-12
  • 上网日期:  2024-01-18
  • 刊出日期:  2024-04-05

/

返回文章
返回