搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

辅助放电下刷状空气等离子体羽的放电特性和参数诊断

张雪雪 贾鹏英 冉俊霞 李金懋 孙换霞 李雪辰

引用本文:
Citation:

辅助放电下刷状空气等离子体羽的放电特性和参数诊断

张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰

Discharge characteristics and parameter diagnosis of brush-shaped air plasma plumes under auxiliary discharge

Zhang Xue-Xue, Jia Peng-Ying, Ran Jun-Xia, Li Jin-Mao, Sun Huan-Xia, Li Xue-Chen
PDF
HTML
导出引用
  • 大气压等离子体射流(APPJ)能产生富含活性粒子的等离子体羽, 在众多领域具有广泛的应用前景. 从应用角度考虑, 如何产生大尺度弥散等离子体羽是APPJ研究的热点之一. 目前, 利用惰性气体APPJ已经能产生令人满意的大尺度等离子体羽, 但从经济性上考虑, 如何产生大尺度空气等离子体羽更具有应用价值. 针对于此, 本工作设计了一个具有辅助放电的APPJ, 产生了大尺度刷形空气等离子体羽. 结果表明, 刷状空气等离子体羽可以在一定电压峰值(Vp)内产生, 并且随着Vp增大等离子体羽的长度和发光强度都增大. 电压和发光信号波形表明, 每半个电压周期最多会有一次放电. 每半个电压周期的放电概率和光脉冲的强度都随着Vp增大而增大, 但放电起始时刻的电压值会随着Vp增大而降低. 高速影像研究表明弥散刷形空气等离子体羽和小尺度空气等离子体羽的产生机制类似, 均源于分叉正流光的时间叠加. 此外, 采集了刷形空气等离子体羽的发射光谱, 并利用其对放电的电子温度、电子密度、分子振动温度和气体温度进行了研究. 结果表明, 等离子体羽的气体温度较低, 且基本不随Vp变化. 然而电子密度、电子温度和分子振动温度均随着Vp增大而升高. 利用激光诱导荧光光谱技术研究了等离子体羽的OH浓度, 发现OH分布较为均匀, 且其浓度随着Vp增大而增大. 最后, 对这些变化规律进行定性分析.
    Atmospheric pressure plasma jet (APPJ) can produce plasma plumes rich in active species, which has a wide scope of applications. From the perspective of applications, it is one of the hot issues in APPJ research to generate a diffuse plasma plume on a large scale. At present, large-scale plasma plume has been produced by noble working gases, which is more economic and valuable if it is reproduced by air used as the working gas. In this work, an APPJ with an auxiliary discharge is proposed, with which a large-scale air plasma plume with a brush shape is produced. Results indicate that the brush-shaped air plume can exist by changing voltage amplitude (Vp) in a certain range. The length and brightness of the plasma plume increase with Vp increasing. The waveforms of voltage and light emission signalindicate that the discharge can start at most once within half a cycle of applied voltage. The probability of discharge and the intensity of light emission pulse for each half a voltage cycle increase with Vp increasing, but the voltage value at the discharge moment decreases with Vp increasing. High-speed imaging study shows that the generation mechanisms of diffuse brush-shaped air plasma plumes and small-scale air plasma are similar, both originating from the temporal superposition of bifurcated normal flow light. In addition, optical emission spectra from the brush-shaped air plasma plume are utilized to study electron temperature, electron density, molecular vibrational temperature, and gas temperature. With Vp increasing, gas temperature is low and almost unchanged, while electron density, electron temperature, and molecular vibrational temperature increase. In addition, OH concentration of the plasma plume is investigated by laser-induced fluorescence, indicating that OH is uniformly distributed, and its concentration increases with the Vp increasing. All these results mentioned above are qualitatively analyzed.
      通信作者: 李雪辰, plasmalab@126.com
    • 基金项目: 国家自然科学基金(批准号: 12375250, 11875121, 51977057, 11805013)、河北省自然科学基金(批准号: A2023201012, A2020201025,A2022201036)和黑龙江省省属本科高校基本科研业务费(批准号: 2022-KYYWF-0475)资助的课题.
      Corresponding author: Li Xue-Chen, plasmalab@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12375250, 11875121, 51977057, 11805013), the Natural Science Foundation of Hebei Province, China (Grant Nos. A2023201012, A2020201025, A2022201036), and the Fundamental Research Funds for the Undergraduate Universities in Heilongjiang Province, China (Grant No. 2022-KYYWF-0475).
    [1]

    Naidis G V, Sosnin E A, Panarin V A, Skakun V S, Tarasenko V F 2016 IEEE Trans. Plasma Sci. 44 3249Google Scholar

    [2]

    Reuter S, Von Woedtke T, Weltmann K D 2018 J. Phys. D Appl. Phys. 51 233001Google Scholar

    [3]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [4]

    Chen S L, Cheng T, Chen Z Q, Chen X Y, Zhang G J 2021 Appl. Surf. Sci. 544 148956Google Scholar

    [5]

    Jia P Y, Jia H X, Ran J X, Wu K Y, Wu J C, Pang X X, Li X C 2023 Chin. Phys. B 32 085202Google Scholar

    [6]

    Gangal U, Exarhos S, Contreras T, Rich C C, Dolan K, Yang V, Frontiera R R, Bruggeman P 2022 Plasma Process. Polym. 19 e2200031Google Scholar

    [7]

    Xuan L T Q, Nguyen L N, Dao N T 2021 Nanotechnol. 33 105603

    [8]

    Ning W, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar

    [9]

    Satale V V, Ganesh V, Dey A, Krishnamurthy S, Bhat S V 2021 Int. J. Hydrogen Energy 46 12715Google Scholar

    [10]

    Liu D W, Zhang Y Z, Xu M Y, Chen H X, Lu X P, Ostrikov K K 2020 Plasma Process. Polym. 17 e1900218Google Scholar

    [11]

    Xu Z M, Lan Y, Ma J, Shen J, Han W, Hu S H, Ye C B, Xi W H, Zhang Y D, Yang C J, Zhao X, Cheng C 2020 Plasma Sci. Technol. 22 103001Google Scholar

    [12]

    Lata S, Chakravorty S, Mitra T, Pradhan P K, Mohanty S, Patel P, Jha E, Panda P K, Verma S K, Suar M 2022 Mater. Today Bio. 13 100200Google Scholar

    [13]

    Shashurin A, Keidar M, Bronnikov S, Jurjus R A, Stepp M A 2008 Appl. Phys. Lett. 93 181501Google Scholar

    [14]

    Duan Y X, Huang C, Yu Q S 2007 Rev. Sci. Instrum. 78 015104Google Scholar

    [15]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar

    [16]

    Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 583Google Scholar

    [17]

    Urabe K, Sands B L, Ganguly B N, Sakai O 2012 Plasma Sources Sci. Technol. 21 034004Google Scholar

    [18]

    Babaeva N Y, Naidis G V, Tereshonok D V, Zhang C, Huang B D, Shao T 2021 Plasma Sources Sci. Technol. 30 115021Google Scholar

    [19]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar

    [20]

    Lu X P, Jiang Z H, Xiong Q, Tang Z, Hu X, Pan Y 2008 Appl. Phys. Lett. 92 081502Google Scholar

    [21]

    Darny T, Bauville G, Fleury M, Pasquiers S, Sousa J S 2021 Plasma Sources Sci. Technol. 30 105021Google Scholar

    [22]

    Matsusaka S 2019 Adv. Powder Technol. 30 2851Google Scholar

    [23]

    Duan Z C, Li P Z, He F, Han R Y, Ouyang J T 2021 Plasma Sources Sci. Technol. 30 025001Google Scholar

    [24]

    Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K 2009 Appl. Phys. Lett. 95 141502Google Scholar

    [25]

    Liu Z Y, Xu J G, Zhu X, Liu F, Fang Z 2022 High Volt. 7 771Google Scholar

    [26]

    Cao Z, Nie Q, Bayliss D L, Walsh J L, Ren C S, Wang D Z, Kong M G 2010 Plasma Sources Sci. Technol. 19 025003Google Scholar

    [27]

    Wang S M, Zhang J L, Li G F, Wang D Z 2014 Vacuum 101 317Google Scholar

    [28]

    杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 物理学报 70 155201Google Scholar

    Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar

    [29]

    Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar

    [30]

    Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar

    [31]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Dong L F 2018 Phys. Plasmas 25 043519Google Scholar

    [32]

    Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 013501Google Scholar

    [33]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [34]

    Kolb J F, Mohamed A A H, Price R O, Swanson R J, Bowman A, Chiavarini R L, Stacey M, Schoenbach K H 2008 Appl. Phys. Lett. 92 241501Google Scholar

    [35]

    Wu S Q, Liu X Y, Mao W H, Chen W, Liu C, Zhang C H 2018 J. Appl. Phys. 124 243302Google Scholar

    [36]

    Liu K, Zhang X H, Zhou X F, Huo X M, Wang X H, Ostrikov K K 2022 J. Phys. D Appl. Phys. 55 485202Google Scholar

    [37]

    Liu K, Hu H, Lei J, Hu Y, Zheng Z 2016 Phys. Plasmas 23 123510Google Scholar

    [38]

    Lu X P, Liu D W, Xian Y B, Nie L L, Cao Y G, He G Y 2021 Phys. Plasmas 28 100501Google Scholar

    [39]

    Yang Y W, Wu J Y, Chiang M H, Wu J S 2012 IEEE Trans. Plasma Sci. 40 3003Google Scholar

    [40]

    Li X C, Wu J C, Jia B Y, Wu K Y, Kang P C, Zhang F R, Zhao N, Jia P Y, Wang L, Li S Z 2020 Appl. Phys. Lett. 117 134102Google Scholar

    [41]

    Li X C, Bao W T, Chu J D, Zhang P P, Jia P Y 2015 Plasma Sources Sci. Technol. 24 065020Google Scholar

    [42]

    Li X C, Wu K Y, Liu R J, Yang L W, Geng J L, Wang B, Jia P Y 2019 IEEE Trans. Plasma Sci. 47 1330Google Scholar

    [43]

    Li Z, Liu J, Lu X 2020 Plasma Sources Sci. Technol. 29 045015Google Scholar

    [44]

    Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar

    [45]

    卢新培, 吴帆, 李嘉胤 2021 高电压技术 47 1831Google Scholar

    Lu X P, Wu F, Li J Y 2021 High Voltage Eng. 47 1831Google Scholar

    [46]

    Jiang J K, Gonzalvo Y A, Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 045023Google Scholar

    [47]

    Darny T, Pouvesle J M, Fontane J, Joly L, Dozias S, Robert E 2017 Plasma Sources Sci. Technol. 26 105001Google Scholar

    [48]

    Lichten W 1957 J. Chem. Phys. 26 306Google Scholar

    [49]

    Akishev Y, Aponin G, Petryakov A, Trushkin N 2018 J. Phys. D Appl. Phys. 51 274006Google Scholar

    [50]

    Yuri R P 1991 Gas Discharge Physics (New York: Springer-Verlag) pp53–60

    [51]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [52]

    Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Process. Polym. 20 e2200188Google Scholar

    [53]

    Wu K Y, Zhao N, Niu Q M, Wu J C, Zhou S, Jia P Y, Li X C 2022 Plasma Sci. Technol. 24 055405Google Scholar

    [54]

    Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar

    [55]

    Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar

    [56]

    Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403Google Scholar

    [57]

    Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 32Google Scholar

    [58]

    Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of the experimental setup.

    图 2  曝光时间(texp)为0.5 s, 不同Vp下等离子体羽的照片 (a) 9.0 kV; (b) 10.8 kV; (c) 12.4 kV; (d) 14.0 kV

    Fig. 2.  Images of the plasma plume under different Vp with an exposure time (texp) of 0.5 s: (a) 9.0 kV; (b) 10.8 kV; (c) 12.4 kV; (d) 14.0 kV.

    图 3  外加电压和发光信号的波形, (a)—(d)分别对应图2(a)(d)

    Fig. 3.  Waveforms of applied voltage and light emission signal from the plasma plume, (a)–(d) correspond to Fig. 2(a)-(d), respectively.

    图 4  (a) VincVp的变化关系; (b) 平均发光脉冲强度和每半个电压周期内放电概率随Vp的变化关系

    Fig. 4.  (a) Vinc as a function of Vp; (b) average pulse intensity and probability per voltage half cycle as functions of Vp.

    图 5  不同texp下等离子体羽的ICCD图像, Vp为14.0 kV

    Fig. 5.  ICCD images of the plasma plume with varying texp, Vp is 14.0 kV.

    图 6  等离子体羽的总发射光谱

    Fig. 6.  Optical emission spectrum of the plasma plume.

    图 7  谱线强度比I371 nm/I380 nm (a)与I391 nm/I380 nm (b)随Vp的变化关系

    Fig. 7.  Line intensity ratios of I371 nm/I380 nm (a) and I391 nm/I380 nm (b) as functions of Vp.

    图 8  Tg (a)和Tv (b)的拟合图, Tg (c)和Tv (d)随Vp 的变化关系

    Fig. 8.  A fitting process to calculate Tg (a) and Tv (b); Tg (c) and Tv (d) as functions of Vp.

    图 9  不同Vp下等离子体羽的LIF照片 (a) 9.0 kV; (b) 10.8 kV; (c) 12.4 kV; (d) 14.0 kV

    Fig. 9.  Images of laser induced fluorescence under different Vp: (a) 9.0 kV; (b) 10.8 kV; (c) 12.4 kV; (d) 14.0 kV.

  • [1]

    Naidis G V, Sosnin E A, Panarin V A, Skakun V S, Tarasenko V F 2016 IEEE Trans. Plasma Sci. 44 3249Google Scholar

    [2]

    Reuter S, Von Woedtke T, Weltmann K D 2018 J. Phys. D Appl. Phys. 51 233001Google Scholar

    [3]

    Li X C, Liu R J, Li X N, Gao K, Wu J C, Gong D D, Jia P Y 2019 Phys. Plasmas 26 023510Google Scholar

    [4]

    Chen S L, Cheng T, Chen Z Q, Chen X Y, Zhang G J 2021 Appl. Surf. Sci. 544 148956Google Scholar

    [5]

    Jia P Y, Jia H X, Ran J X, Wu K Y, Wu J C, Pang X X, Li X C 2023 Chin. Phys. B 32 085202Google Scholar

    [6]

    Gangal U, Exarhos S, Contreras T, Rich C C, Dolan K, Yang V, Frontiera R R, Bruggeman P 2022 Plasma Process. Polym. 19 e2200031Google Scholar

    [7]

    Xuan L T Q, Nguyen L N, Dao N T 2021 Nanotechnol. 33 105603

    [8]

    Ning W, Dai D, Zhang Y H 2019 Appl. Phys. Lett. 114 054104Google Scholar

    [9]

    Satale V V, Ganesh V, Dey A, Krishnamurthy S, Bhat S V 2021 Int. J. Hydrogen Energy 46 12715Google Scholar

    [10]

    Liu D W, Zhang Y Z, Xu M Y, Chen H X, Lu X P, Ostrikov K K 2020 Plasma Process. Polym. 17 e1900218Google Scholar

    [11]

    Xu Z M, Lan Y, Ma J, Shen J, Han W, Hu S H, Ye C B, Xi W H, Zhang Y D, Yang C J, Zhao X, Cheng C 2020 Plasma Sci. Technol. 22 103001Google Scholar

    [12]

    Lata S, Chakravorty S, Mitra T, Pradhan P K, Mohanty S, Patel P, Jha E, Panda P K, Verma S K, Suar M 2022 Mater. Today Bio. 13 100200Google Scholar

    [13]

    Shashurin A, Keidar M, Bronnikov S, Jurjus R A, Stepp M A 2008 Appl. Phys. Lett. 93 181501Google Scholar

    [14]

    Duan Y X, Huang C, Yu Q S 2007 Rev. Sci. Instrum. 78 015104Google Scholar

    [15]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Geng J L 2016 Appl. Phys. Lett. 109 204102Google Scholar

    [16]

    Li X C, Chu J D, Jia P Y, Li Y R, Wang B, Dong L F 2018 IEEE Trans. Plasma Sci. 46 583Google Scholar

    [17]

    Urabe K, Sands B L, Ganguly B N, Sakai O 2012 Plasma Sources Sci. Technol. 21 034004Google Scholar

    [18]

    Babaeva N Y, Naidis G V, Tereshonok D V, Zhang C, Huang B D, Shao T 2021 Plasma Sources Sci. Technol. 30 115021Google Scholar

    [19]

    Chen J Y, Zhao N, Wu J C, Wu K Y, Zhang F R, Ran J X, Jia P Y, Pang X X, Li X C 2022 Chin. Phys. B 31 065205Google Scholar

    [20]

    Lu X P, Jiang Z H, Xiong Q, Tang Z, Hu X, Pan Y 2008 Appl. Phys. Lett. 92 081502Google Scholar

    [21]

    Darny T, Bauville G, Fleury M, Pasquiers S, Sousa J S 2021 Plasma Sources Sci. Technol. 30 105021Google Scholar

    [22]

    Matsusaka S 2019 Adv. Powder Technol. 30 2851Google Scholar

    [23]

    Duan Z C, Li P Z, He F, Han R Y, Ouyang J T 2021 Plasma Sources Sci. Technol. 30 025001Google Scholar

    [24]

    Li Q, Li J T, Zhu W C, Zhu X M, Pu Y K 2009 Appl. Phys. Lett. 95 141502Google Scholar

    [25]

    Liu Z Y, Xu J G, Zhu X, Liu F, Fang Z 2022 High Volt. 7 771Google Scholar

    [26]

    Cao Z, Nie Q, Bayliss D L, Walsh J L, Ren C S, Wang D Z, Kong M G 2010 Plasma Sources Sci. Technol. 19 025003Google Scholar

    [27]

    Wang S M, Zhang J L, Li G F, Wang D Z 2014 Vacuum 101 317Google Scholar

    [28]

    杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英 2021 物理学报 70 155201Google Scholar

    Yang L J, Song C H, Zhao N, Zhou S, Wu J C, Jia P Y 2021 Acta Phys. Sin. 70 155201Google Scholar

    [29]

    Li Q, Takana H, Pu Y K, Nishiyama H 2011 Appl. Phys. Lett. 98 241501Google Scholar

    [30]

    Li Q, Takana H, Pu Y K, Nishiyama H 2012 Appl. Phys. Lett. 100 133501Google Scholar

    [31]

    Li X C, Chu J D, Zhang Q, Zhang P P, Jia P Y, Dong L F 2018 Phys. Plasmas 25 043519Google Scholar

    [32]

    Tang J, Cao W Q, Zhao W, Wang Y S, Duan Y X 2012 Phys. Plasmas 19 013501Google Scholar

    [33]

    Wu K Y, Liu J N, Wu J C, Chen M, Ran J X, Pang X X, Jia P Y, Li X C, Ren C H 2023 High Volt. 8 1161Google Scholar

    [34]

    Kolb J F, Mohamed A A H, Price R O, Swanson R J, Bowman A, Chiavarini R L, Stacey M, Schoenbach K H 2008 Appl. Phys. Lett. 92 241501Google Scholar

    [35]

    Wu S Q, Liu X Y, Mao W H, Chen W, Liu C, Zhang C H 2018 J. Appl. Phys. 124 243302Google Scholar

    [36]

    Liu K, Zhang X H, Zhou X F, Huo X M, Wang X H, Ostrikov K K 2022 J. Phys. D Appl. Phys. 55 485202Google Scholar

    [37]

    Liu K, Hu H, Lei J, Hu Y, Zheng Z 2016 Phys. Plasmas 23 123510Google Scholar

    [38]

    Lu X P, Liu D W, Xian Y B, Nie L L, Cao Y G, He G Y 2021 Phys. Plasmas 28 100501Google Scholar

    [39]

    Yang Y W, Wu J Y, Chiang M H, Wu J S 2012 IEEE Trans. Plasma Sci. 40 3003Google Scholar

    [40]

    Li X C, Wu J C, Jia B Y, Wu K Y, Kang P C, Zhang F R, Zhao N, Jia P Y, Wang L, Li S Z 2020 Appl. Phys. Lett. 117 134102Google Scholar

    [41]

    Li X C, Bao W T, Chu J D, Zhang P P, Jia P Y 2015 Plasma Sources Sci. Technol. 24 065020Google Scholar

    [42]

    Li X C, Wu K Y, Liu R J, Yang L W, Geng J L, Wang B, Jia P Y 2019 IEEE Trans. Plasma Sci. 47 1330Google Scholar

    [43]

    Li Z, Liu J, Lu X 2020 Plasma Sources Sci. Technol. 29 045015Google Scholar

    [44]

    Wu J C, Jia P Y, Ran J X, Chen J Y, Zhang F R, Wu K Y, Zhao N, Ren C H, Yin Z Q, Li X C 2021 Phys. Plasmas 28 073501Google Scholar

    [45]

    卢新培, 吴帆, 李嘉胤 2021 高电压技术 47 1831Google Scholar

    Lu X P, Wu F, Li J Y 2021 High Voltage Eng. 47 1831Google Scholar

    [46]

    Jiang J K, Gonzalvo Y A, Bruggeman P J 2020 Plasma Sources Sci. Technol. 29 045023Google Scholar

    [47]

    Darny T, Pouvesle J M, Fontane J, Joly L, Dozias S, Robert E 2017 Plasma Sources Sci. Technol. 26 105001Google Scholar

    [48]

    Lichten W 1957 J. Chem. Phys. 26 306Google Scholar

    [49]

    Akishev Y, Aponin G, Petryakov A, Trushkin N 2018 J. Phys. D Appl. Phys. 51 274006Google Scholar

    [50]

    Yuri R P 1991 Gas Discharge Physics (New York: Springer-Verlag) pp53–60

    [51]

    Lu X P, Laroussi M 2006 J. Appl. Phys. 100 063302Google Scholar

    [52]

    Wu J C, Li X C, Ran J X, Jia H X, Wu K Y, Han G X, Liu J N, Chen J Y, Pang X X, Jia P Y 2023 Plasma Process. Polym. 20 e2200188Google Scholar

    [53]

    Wu K Y, Zhao N, Niu Q M, Wu J C, Zhou S, Jia P Y, Li X C 2022 Plasma Sci. Technol. 24 055405Google Scholar

    [54]

    Belmonte T, Noël C, Gries T, Martin J, Henrion G 2015 Plasma Sources Sci. Technol. 24 064003Google Scholar

    [55]

    Li X C, Zhou S, Gao K, Ran J X, Wu K Y, Jia P Y 2022 IEEE Trans. Plasma Sci. 50 1717Google Scholar

    [56]

    Ran J X, Zhang X X, Zhang Y, Wu K Y, Zhao N, He X R, Dai X H, Liang Q H, Li X C 2023 Plasma Sci. Technol. 25 055403Google Scholar

    [57]

    Masoud N, Martus K, Figus M, Becker K 2005 Contrib. Plasma Phys. 45 32Google Scholar

    [58]

    Yue Y F, Wu F, Cheng H, Xian Y B, Liu D W, Lu X P, Pei X K 2017 J. Appl. Phys. 121 033302Google Scholar

  • [1] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性. 物理学报, 2024, 73(18): 185203. doi: 10.7498/aps.73.20240760
    [2] 胡杨, 罗婧怡, 蔡雨烟, 卢新培. 外加磁场对螺旋等离子体的影响. 物理学报, 2023, 72(13): 130501. doi: 10.7498/aps.72.20222442
    [3] 税敏, 席涛, 闫永宏, 于明海, 储根柏, 朱斌, 何卫华, 赵永强, 王少义, 范伟, 卢峰, 杨雷, 辛建婷, 周维民. 激光等离子体射流驱动亚毫米直径铝飞片及姿态诊断. 物理学报, 2022, 71(9): 095201. doi: 10.7498/aps.71.20212136
    [4] 张亚容, 韩乾翰, 郭颖, 张菁, 石建军. 大气压脉冲放电等离子体射流特性及机理研究. 物理学报, 2021, 70(9): 095202. doi: 10.7498/aps.70.20202246
    [5] 王振兴, 曹志远, 李瑞, 陈峰, 孙丽琼, 耿英三, 王建华. 纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟. 物理学报, 2021, 70(5): 055201. doi: 10.7498/aps.70.20201701
    [6] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英. 大气压氩气刷形等离子体羽的特性研究. 物理学报, 2021, 70(15): 155201. doi: 10.7498/aps.70.20202091
    [7] 张改玲, 滑跃, 郝泽宇, 任春生. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究. 物理学报, 2019, 68(10): 105202. doi: 10.7498/aps.68.20190071
    [8] 黄骏, 陈维, 李辉, 王鹏业, 杨思泽. 大气压冷等离子体射流灭活子宫颈癌Hela细胞. 物理学报, 2013, 62(6): 065201. doi: 10.7498/aps.62.065201
    [9] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断. 物理学报, 2013, 62(20): 205208. doi: 10.7498/aps.62.205208
    [10] 陈维, 黄骏, 李辉, 吕国华, 王兴权, 张国平, 王鹏业, 杨思泽. 氦-氧等离子体针灭活肺癌A549细胞. 物理学报, 2012, 61(18): 185203. doi: 10.7498/aps.61.185203
    [11] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究. 物理学报, 2012, 61(14): 145201. doi: 10.7498/aps.61.145201
    [12] 倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华. 大气压直流滑动弧等离子体工作特性研究. 物理学报, 2011, 60(1): 015101. doi: 10.7498/aps.60.015101
    [13] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究. 物理学报, 2011, 60(12): 125204. doi: 10.7498/aps.60.125204
    [14] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [15] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究. 物理学报, 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [16] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究. 物理学报, 2011, 60(8): 085205. doi: 10.7498/aps.60.085205
    [17] 刘莉莹, 张家良, 郭卿超, 王德真. 大气压等离子体辅助多晶硅薄膜化学气相沉积参数诊断. 物理学报, 2010, 59(4): 2653-2660. doi: 10.7498/aps.59.2653
    [18] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究. 物理学报, 2010, 59(11): 7769-7774. doi: 10.7498/aps.59.7769
    [19] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [20] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究. 物理学报, 2005, 54(4): 1653-1658. doi: 10.7498/aps.54.1653
计量
  • 文章访问数:  2452
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-10
  • 修回日期:  2024-02-05
  • 上网日期:  2024-02-20
  • 刊出日期:  2024-04-20

/

返回文章
返回