-
光学压力传感器在微小形变检测、环境监测以及医学领域等方面具有非常重要的作用. 然而, 外加压力与谐振腔形变前后的光学响应之间的定量关系很难获得. 本文提出了一种基于金属-介质-金属波导的耦合谐振腔系统用于实现光学压力传感器. 利用有限元方法对该系统的力学特性以及受力前后的光学传输特性进行详细分析. 仿真结果显示谐振腔的最大形变量与所施压力呈简单的线性关系. 给出了光学压力传感器灵敏度的直接定义, 并基于条形腔与槽形腔耦合产生的Fano共振现象, 获得了灵敏度为6.75 nm/MPa的光学压力传感器件. 除此之外, 添加了stub谐振腔, 获得了双Fano共振现象, 且随着外部压力的变化, 两个Fano线型表现出不同的变化规律; 特别地, 合适的压力数值可使得双Fano共振变成单Fano共振. 该结构的特点适用于不同压力下的光学性质变化检测、化学高压实验测量和化学反应动力学过程的研究.
-
关键词:
- 表面等离激元 /
- 金属-介质-金属波导 /
- 光学压力传感器 /
- Fano共振
Optical pressure sensor plays a very important role in micro deformation detection, environmental monitoring, and medical fields. However, the quantitative relationship between the applied pressure and the optical response of the resonator before and after deformation is difficult to obtain. In this paper, a coupled resonator system based on metal-insulator-metal waveguide for optical pressure sensor is proposed. The mechanical properties of the system and the optical transmission properties before and after applied pressure are analyzed in detail by using the finite element method. Simulation results show that the maximum deformation of the resonator has a simple linear relationship with the applied pressure. We give a direct definition of the sensitivity of the optical pressure sensor. And based on the Fano resonance phenomenon caused by the coupling the slot cavity with the groove cavity, the optical pressure sensor with a sensitivity of 6.75 nm/MPa is achieved. In addition, we add stub resonator to obtain double Fano resonance phenomenon, and with the change of external pressure, the two Fano line types show different change laws. Specifically, a suitable pressure value can make a double Fano resonance become a single Fano resonance. The special features of our suggested structure are applicable to detecting optical property changes under different pressures, chemical high pressure experimental measurement and study of chemical reaction kinetics process.-
Keywords:
- surface plasmon /
- metal-insulator-metal waveguide /
- optical pressure sensor /
- Fano resonance
[1] Wang J W, Sabcgez M M, Yin Y, Herzer R, Ma L B, Schmidt O G 2020 Adv. Materials Techno. 5 1901138Google Scholar
[2] Luan E, Shoman H, Ratner D M, Cheung K, Chrostowski L 2018 Sensors 18 3519Google Scholar
[3] Mejia J R, Oliveira O N 2018 Chem. Rev. 118 10617Google Scholar
[4] You B W, Lu J Y, Liu T A, Peng J L 2013 Opt. Express 21 21087Google Scholar
[5] Steglich P, Villringer C, Pulwer S 2017 IEEE Sensors J. 17 4781Google Scholar
[6] 肖功利, 张开富, 杨宏艳, 杨寓婷, 杨秀华, 窦婉滢, 曾丽珍 2020 光学学报 40 1206001Google Scholar
Xiao G L, Zhang K F, Yang H Y, Yang Y T, Yang X H, Dou W Y, Zeng L Z 2020 Acta Opt. Sin. 40 1206001Google Scholar
[7] Gandhi S, Awasthi S, Aly A 2021 RSC Adv. 11 26655Google Scholar
[8] Raschke G, Brogl S, Susha S, Rogach A, Klar T, Feldmann J, Fieres B, Petkov N, Bein T, Nichtl A, Kurzinger K 2004 Nano Lett. 4 1853Google Scholar
[9] Perfezou M, Turner A, Merkoci A 2012 Chem. Soc. Rev. 41 2606Google Scholar
[10] 旷依琴, 李刚, 闫竹青, 张彦军, 张志东, 郝现伟 2020 光学学报 40 1424001Google Scholar
Kuang Y Q, Li G, Yan Z Q, Zhang Y J, Zhang Z D, Hao X W 2020 Acta Opt. Sin. 40 1424001Google Scholar
[11] Nourinovin S, Nacarro M, Rahman M M 2022 IEEE Antenn. Propag. M. 64 60Google Scholar
[12] Bochenkov V E, Shabatina T I 2018 Biosensors 8 120Google Scholar
[13] Chen Z, Ma X X, Duan Y H, Li LH, Zhang S J, Wang Y L, Yu Y L, Hou Z L 2023 Opt. Express 31 35697Google Scholar
[14] 张燕君, 王护吉, 张龙图, 李广亮, 付兴虎 2022 光学学报 42 0524002Google Scholar
Zhang Y J, Wang H J, Zhang L T, Li G L, Fu X H 2022 Acta Opt. Sin. 42 0524002Google Scholar
[15] Chen J, Li Z, Zou Y 2013 Plasmonics 8 1627Google Scholar
[16] Wen K, Chen L, Zhou J 2018 Sensors 18 3181Google Scholar
[17] 韩帅涛, 陈颖, 许扬眉, 曹景刚, 高新贝, 谢进朝, 朱奇光 2019 光学学报 39 0212005Google Scholar
Han S T, Chen Y, Xu Y M, Cao J G, Gao X B, Xie J C, Zhu Q G 2019 Acta Optica Sinica 39 0212005Google Scholar
[18] Chau Y, Chao C, Huang H 2019 Nanomaterials 9 1433Google Scholar
[19] Tathfif I, Hassan M, Sharmeen K 2022 Opt. Commun. 519 128429Google Scholar
[20] Chen Z, Wang Y L, Hou Z L 2022 IEEE Sensors J. 22 14044Google Scholar
[21] Chaudhary V S, Kumar D, Mishra R 2020 Optik 210 164497Google Scholar
[22] Fu H, Tam H Y, Shao L Y 2008 Appl. Opt. 47 2835Google Scholar
[23] Chen F, Yang W X 2022 J. Opt. Soc. Am. B 39 1716Google Scholar
[24] Tathfif I, Yaseer A A, Rashid K S 2021 Opt. Express 29 32365Google Scholar
[25] Wu J, Lang P, Chen X 2016 J. Mod. Opt. 63 219Google Scholar
[26] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[27] Chen Z, Yu L, Wang L 2015 J. Light. Technolo. 33 3250Google Scholar
[28] Chen Z, Yu L, Wang L 2015 IEEE Photon. Techno. Lett. 27 1695Google Scholar
[29] Chen J J, Li Z, Li J, Gong Q H 2011 Opt. Express 19 9976Google Scholar
[30] Wu Y D 2014 J. Light. Techno. 32 4242Google Scholar
[31] Rohimah S, Tian H, Wang J 2022 Appl. Opt. 61 1275Google Scholar
[32] Chai Z, Hu X Y, Zhu Y, Sun S B, Yang H, Gong Q H 2014 Adv. Opt. Mater. 2 320Google Scholar
[33] Chai Z, Hu X Y, Yang H, Gong Q H 2016 Appl. Phys. Lett. 108 151104Google Scholar
-
图 2 输入压力P = 50 MPa (a) 冯·米塞斯应力分布; (b) y-方向形变量分布示意图; (c) 不同输入压力P下形变量 d 沿图(b)中黑色虚线 m 的分布示意图; (d)最大形变量dmax与输入压力P的关系图
Fig. 2. (a) Von Mises stress (a) and deformation displacement field y-component (b) distributions at P = 50 MPa; (c) distribution of deformation d along the black dashed line m in (b) at different input pressure P; (d) distribution of the maximum deformation dmax vs. input pressure P.
图 3 (a) 形变后的超细化三角形网格示意图; (b) 不同压力时, 系统的透射谱分布图; (c) P = 40 MPa时, 输入波长为λ = 1675 nm时的归一化|Hz|分布图(图(b)中粉色箭头所示位置)
Fig. 3. (a) Extra-fine triangular meshing of the proposed structure model after deformation; (b) transmission spectra for different P; (c) normalized field distributions of |Hz| at λ = 1675 nm (showed by the pink arrow in Fig. (b)).
图 4 (a)插图中所示结构, 有无压力时的透射谱示意图, 黑色和红色曲线分别对应P = 0 MPa和P = 50 MPa时的情形; P = 50 MPa时, (b) λ = 1366 nm和(c) λ = 1790 nm, 两个Fano峰位置处的归一化|Hz|分布图, 图(a)中的插图为增加stub腔之后的结构示意图
Fig. 4. (a) Transmission spectra of the inset structure with P = 0 MPa (black line) and P = 50 MPa (red line); normalized field distributions of |Hz| at (b) λ = 1366 nm and (c) λ = 1790 nm at P = 50 MPa. Inset shows the schematic diagram of the structure after adding a stub cavity.
-
[1] Wang J W, Sabcgez M M, Yin Y, Herzer R, Ma L B, Schmidt O G 2020 Adv. Materials Techno. 5 1901138Google Scholar
[2] Luan E, Shoman H, Ratner D M, Cheung K, Chrostowski L 2018 Sensors 18 3519Google Scholar
[3] Mejia J R, Oliveira O N 2018 Chem. Rev. 118 10617Google Scholar
[4] You B W, Lu J Y, Liu T A, Peng J L 2013 Opt. Express 21 21087Google Scholar
[5] Steglich P, Villringer C, Pulwer S 2017 IEEE Sensors J. 17 4781Google Scholar
[6] 肖功利, 张开富, 杨宏艳, 杨寓婷, 杨秀华, 窦婉滢, 曾丽珍 2020 光学学报 40 1206001Google Scholar
Xiao G L, Zhang K F, Yang H Y, Yang Y T, Yang X H, Dou W Y, Zeng L Z 2020 Acta Opt. Sin. 40 1206001Google Scholar
[7] Gandhi S, Awasthi S, Aly A 2021 RSC Adv. 11 26655Google Scholar
[8] Raschke G, Brogl S, Susha S, Rogach A, Klar T, Feldmann J, Fieres B, Petkov N, Bein T, Nichtl A, Kurzinger K 2004 Nano Lett. 4 1853Google Scholar
[9] Perfezou M, Turner A, Merkoci A 2012 Chem. Soc. Rev. 41 2606Google Scholar
[10] 旷依琴, 李刚, 闫竹青, 张彦军, 张志东, 郝现伟 2020 光学学报 40 1424001Google Scholar
Kuang Y Q, Li G, Yan Z Q, Zhang Y J, Zhang Z D, Hao X W 2020 Acta Opt. Sin. 40 1424001Google Scholar
[11] Nourinovin S, Nacarro M, Rahman M M 2022 IEEE Antenn. Propag. M. 64 60Google Scholar
[12] Bochenkov V E, Shabatina T I 2018 Biosensors 8 120Google Scholar
[13] Chen Z, Ma X X, Duan Y H, Li LH, Zhang S J, Wang Y L, Yu Y L, Hou Z L 2023 Opt. Express 31 35697Google Scholar
[14] 张燕君, 王护吉, 张龙图, 李广亮, 付兴虎 2022 光学学报 42 0524002Google Scholar
Zhang Y J, Wang H J, Zhang L T, Li G L, Fu X H 2022 Acta Opt. Sin. 42 0524002Google Scholar
[15] Chen J, Li Z, Zou Y 2013 Plasmonics 8 1627Google Scholar
[16] Wen K, Chen L, Zhou J 2018 Sensors 18 3181Google Scholar
[17] 韩帅涛, 陈颖, 许扬眉, 曹景刚, 高新贝, 谢进朝, 朱奇光 2019 光学学报 39 0212005Google Scholar
Han S T, Chen Y, Xu Y M, Cao J G, Gao X B, Xie J C, Zhu Q G 2019 Acta Optica Sinica 39 0212005Google Scholar
[18] Chau Y, Chao C, Huang H 2019 Nanomaterials 9 1433Google Scholar
[19] Tathfif I, Hassan M, Sharmeen K 2022 Opt. Commun. 519 128429Google Scholar
[20] Chen Z, Wang Y L, Hou Z L 2022 IEEE Sensors J. 22 14044Google Scholar
[21] Chaudhary V S, Kumar D, Mishra R 2020 Optik 210 164497Google Scholar
[22] Fu H, Tam H Y, Shao L Y 2008 Appl. Opt. 47 2835Google Scholar
[23] Chen F, Yang W X 2022 J. Opt. Soc. Am. B 39 1716Google Scholar
[24] Tathfif I, Yaseer A A, Rashid K S 2021 Opt. Express 29 32365Google Scholar
[25] Wu J, Lang P, Chen X 2016 J. Mod. Opt. 63 219Google Scholar
[26] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar
[27] Chen Z, Yu L, Wang L 2015 J. Light. Technolo. 33 3250Google Scholar
[28] Chen Z, Yu L, Wang L 2015 IEEE Photon. Techno. Lett. 27 1695Google Scholar
[29] Chen J J, Li Z, Li J, Gong Q H 2011 Opt. Express 19 9976Google Scholar
[30] Wu Y D 2014 J. Light. Techno. 32 4242Google Scholar
[31] Rohimah S, Tian H, Wang J 2022 Appl. Opt. 61 1275Google Scholar
[32] Chai Z, Hu X Y, Zhu Y, Sun S B, Yang H, Gong Q H 2014 Adv. Opt. Mater. 2 320Google Scholar
[33] Chai Z, Hu X Y, Yang H, Gong Q H 2016 Appl. Phys. Lett. 108 151104Google Scholar
计量
- 文章访问数: 1860
- PDF下载量: 50
- 被引次数: 0