搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大尺寸三维超声振动系统的智能优化设计

林基艳 孙姣夏 林书玉

引用本文:
Citation:

大尺寸三维超声振动系统的智能优化设计

林基艳, 孙姣夏, 林书玉

Intelligent optimization design of large-scale three-dimensional ultrasonic vibration system

Lin Ji-Yan, Sun Jiao-Xia, Lin Shu-Yu
PDF
HTML
导出引用
  • 对大尺寸三维超声换能器系统的耦合振动进行有效控制, 优化系统的性能, 一直都是功率超声领域亟待解决的难题. 研究发现, 一些声子晶体槽、孔结构可以对大尺寸换能器系统的横向振动进行抑制, 提高系统振幅分布均匀度, 且可以通过改变声子晶体结构的配置参数人为地实现对大尺寸三维超声振动系统性能的调控. 但过多的设计参数必然会增加系统设计的复杂度, 且目前大尺寸三维超声换能器系统的优化设计依赖于经验试错法, 设计效率和成功率较低, 性能也无法保证. 研究引入同质位错、点缺陷结构对大尺寸三维超声振动系统进行优化设计, 并利用数据分析技术评价了同质位错、点缺陷结构的配置对系统辐射面的纵向位移振幅、振幅分布均匀度、辐射声功率、工作带宽等的影响规律, 建立了同质位错结构、近周期缺陷结构的结构参数——大尺寸超声换能器系统性能的预测模型, 实现了对大尺寸功率超声换能器系统的智能设计, 提高了设计效率和成功率, 降低了设计成本.
    Large-scale three-dimensional ultrasonic vibration systems are susceptible to the influence of coupled vibration, resulting in a series of problems such as increased energy loss, small longitudinal displacement amplitude of the radiation surface, and uneven distribution of longitudinal displacement amplitude, which can seriously affect the working efficiency of ultrasonic processing system. How to effectively control the coupled vibration of large-scale three-dimensional ultrasonic transducer systems and optimize their performance has become an urgent problem in the field of power ultrasound. The research has found that some phononic crystal slots and point defect structures can suppress the lateral vibration of large-scale transducer systems, improve the uniformity of system amplitude distribution, and artificially regulate the performance of large-scale three-dimensional ultrasonic vibration systems by changing the configuration parameters of phononic crystal structures. However, excessive design parameters will inevitably increase the complexity of system design, and, currently, the optimization design of large-scale three-dimensional ultrasonic transducer systems relies on empirical trial and error methods which has low design efficiency and low success rate, and cannot guarantee the system performance. Therefore, in the study, homogeneous dislocations and point defect structures are introduced to optimize the design of large-scale three-dimensional ultrasonic vibration systems. Data analysis techniques are used to evaluate the influences of the configuration of homogeneous dislocations and point defect structures on the longitudinal displacement amplitude, amplitude distribution uniformity, radiated sound power, working bandwidth of the system’s radiation surface. And a predictive model for the performance of large-scale ultrasonic transducer system with homogeneous dislocation structure and near periodic defect structure is established, which can achieve intelligent design of large-scale power ultrasonic transducer system, improve design efficiency and success rate, and reduce the design cost.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174240, 12364057, 12004330)和博士科研启动基金(批准号: 22GK26)资助的课题.
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174240, 12364057, 12004330) and the Doctoral Research Start-up Fund, China (Grant No. 22GK26).
    [1]

    周光平, 梁明军, 王家宣 2004 声学技术 2004 183Google Scholar

    Zhou G P, Liang M J, Wang J X 2004 Tech. Acous. 2004 183Google Scholar

    [2]

    Mori E, Itoh K, Imamura A 1995 J. Acous. Soc. Jpn. 51 455Google Scholar

    [3]

    Lin S 1995 Appl. Acous. 44 249Google Scholar

    [4]

    Ren S C 1983 Acta Acus. 1 152Google Scholar

    [5]

    Lin S 2009 IEEE Trans. Ultra. Ferr. Freq Cont. 56 1990.Google Scholar

    [6]

    俞宏沛 1994 声学与电子工程 1994 9

    Yu H P 1994 Acous. Elec. Engi. 1994 9

    [7]

    周利生 1993 声学与电子工程 1993 28

    Zhou L S 1993 Acous. Elec. Engi. 1993 28

    [8]

    周利生 1993 声学与电子工程 1993 16

    Zhou L S 1993 Acous. Elec. Engi. 1993 16

    [9]

    林书玉, 张福成 1992 声学学报 1992 451

    Lin S Y, Zhang F C 1991 J. Acous. 1992 451

    [10]

    林书玉, 张福成 1991 应用声学 1991 10Google Scholar

    Lin S Y, Zhang F C 1991 Appl. Acous. 1991 10Google Scholar

    [11]

    林书玉, 张福成, 郭孝武 1991 声学学报 1991 91Google Scholar

    Lin S Y, Zhang F C Guo X W 1991 J. Acous. 1991 91Google Scholar

    [12]

    Lucas M, Smith A C 1997 J. Vibr. Acous. 119 410Google Scholar

    [13]

    Cardoni A, Lucas M 2002 Ultrasonics 40 365Google Scholar

    [14]

    Kumar R D, Rani M R, Elangovan S 2014 Appl. Mech. Mater. 592-594 859Google Scholar

    [15]

    Yeon J L, Muhammad B S, Dong S P 2019 MATEC Web Conf. 257 1Google Scholar

    [16]

    Adachi K, Ueha S 1990 J. Acous. Soc. Am. 87 208Google Scholar

    [17]

    Thanh H N, Quang T Q, Cong L T 2017 IOP Conference Series:Materials Science and Engineering 241 1Google Scholar

    [18]

    Rani M R, Prakasan K, Rudramoorthy R 2014 Int. J. Des. 5 344Google Scholar

    [19]

    程存弟 1991 应用声学 10 44Google Scholar

    Chen C D 1991 Appl. Acous. 10 44Google Scholar

    [20]

    林书玉, 张福成 1992 声学技术 11 24Google Scholar

    Lin S Y, Zhang F C 1992 Tech. Acous. 11 24Google Scholar

    [21]

    梁召峰, 周光平, 莫喜平, 张亦慧, 李正中 2008 机械科学与技术 27 334Google Scholar

    Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2008 Mech. Sci. Tech. 27 334Google Scholar

    [22]

    梁召峰, 周光平, 莫喜平, 李正中 2009 工程设计学报 16 200Google Scholar

    Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2009 Journal of Engineering Design 16 200Google Scholar

    [23]

    成桢, 郭建中 2010 声学技术 29 103

    Chen Z, Guo J Z 2010 Tech. Acous. 29 103

    [24]

    赵甜甜, 林书玉, 段祎林 2018 物理学报 67 024303Google Scholar

    Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 024303Google Scholar

    [25]

    王莎, 林书玉 2019 物理学报 68 173Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 173Google Scholar

    [26]

    Wang S, Lin S Y 2019 Ultrasonics 99 105954.Google Scholar

    [27]

    Lin J Y, Lin S Y 2020 Crystals 10 1Google Scholar

    [28]

    Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617 [赵言诚, 赵芳, 苑立波 2006 哈尔滨工程大学学报 2006 617]Google Scholar

    Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617Google Scholar

    [29]

    Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517 [赵芳, 苑立波 2006 物理学报 2 517]Google Scholar

    Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517Google Scholar

    [30]

    何姣 2013 博士学位论文 (昆明: 云南师范大学)

    He J 2013 Ph. D. Dissertation (Kunming: Yunnan Normal University

    [31]

    魏琦, 程营, 刘晓峻 2011 物理学报 60 124301Google Scholar

    Wei Q, Cheng Y, Liu X J 2011 Acta Phys. Sin. 60 124301Google Scholar

  • 图 1  大尺寸三维长方体超声振动系统结构示意图及中心线位置

    Fig. 1.  Structural schematic diagram and centerline position of large-dimension 3D cube ultrasonic vibration system.

    图 2  大尺寸三维超声振动系统振型图

    Fig. 2.  Modal diagram of large-dimension 3D ultrasonic vibration system.

    图 3  辐射面和辐射面长度(X方向)和宽度(Y方向)上的纵向相对位移振幅分布对比图

    Fig. 3.  Comparison diagram of longitudinal relative displacement amplitude distribution on the radiation surface and the length (X-direction) and width (Y-direction) of the radiation surface.

    图 4  同质位错结构 (a) 横向位错结构; (b) 纵向位错结构

    Fig. 4.  Schematic diagram of dislocation defect: (a) Lateral dislocation structure; (b) longitudinal dislocation structure.

    图 5  同质位错结构的工具头 (a) 模型图; (b) 工具头YZ面的各部分尺寸; (c) 工具头XZ面的各部分尺寸

    Fig. 5.  Tool heads with homogeneous dislocation structures: (a) Model diagram; (b) dimensions of each part of the YZ surface of the tool head; (c) dimensions of each part of the XZ surface of the tool head.

    图 6  同质位错结构的大尺寸三维超声振动系统振型图

    Fig. 6.  Modal diagram of large-dimension 3D ultrasonic vibration system with homogeneous dislocation structure.

    图 7  辐射面和辐射面长度(X方向)和宽度(Y方向)上的纵向相对位移振幅分布对比图

    Fig. 7.  Comparison diagram of longitudinal relative displacement amplitude distribution on the radiation surface and the length (X-direction) and width (Y-direction) of the radiation surface.

    图 8  同质位错与点缺陷结构的工具头 (a) 模型图; (b) 空气圆椎体孔的尺寸; (c) 空气圆柱体孔的尺寸

    Fig. 8.  Tool heads with homogeneous dislocations and point defect structures: (a) Model diagram; (b) dimensions of air circular vertebral hole; (c) dimensions of air cylinder holes.

    图 9  同质位错与点缺陷结构的大尺寸三维超声振动系统振型图

    Fig. 9.  Modal diagram of large-dimension 3D ultrasonic vibration system with homogeneous dislocations and point defect structures.

    图 10  辐射面和辐射面长度(X方向)和宽度(Y方向)上的纵向相对位移振幅分布对比图

    Fig. 10.  Comparison diagram of longitudinal relative displacement amplitude distribution on the radiation surface and the length (X-direction) and width (Y-direction) of the radiation surface.

    图 11  h对系统性能的影响

    Fig. 11.  Influence of the parameter of h on the performance of the system.

    图 14  r3对系统性能的影响

    Fig. 14.  Influence of the parameter of r3 on the performance of the system.

    图 12  w对系统性能的影响

    Fig. 12.  Influence of the parameter of w on the performance of the system.

    图 13  h1对系统性能的影响

    Fig. 13.  Influence of the parameter of h1 on the performance of the system.

    图 15  频率f的预测值和实测值的对比及相对误差

    Fig. 15.  Comparison and relative error between predicted and measured values of frequency f.

    图 16  x位移的预测值和实测值的对比及相对误差

    Fig. 16.  Comparison and relative error between predicted and measured values of x displacement.

    图 17  y位移的预测值和实测值的对比及相对误差

    Fig. 17.  Comparison and relative error between predicted and measured values of y displacement.

    图 18  x均匀度的预测值和实测值的对比及相对误差

    Fig. 18.  Comparison and relative error between predicted and measured values of x uniformity.

    图 19  y均匀度的预测值和实测值的对比及相对误差

    Fig. 19.  Comparison and relative error between predicted and measured values of y uniformity.

    图 20  加工的两套系统的实物图

    Fig. 20.  Two sets of processed physical systems.

    图 21  未优化系统的输入电阻抗与谐振频率的测量与对比 (a) 测量过程; (b) 测量结果; (c) 仿真导纳曲线图

    Fig. 21.  Measurement and comparison of input impedance and resonant frequency of unoptimized systems: (a) Measurement process; (b) measurement results; (c) simulation admittance curve.

    图 22  优化后系统的输入电阻抗与谐振频率的测量与对比 (a) 测量过程; (b) 测量结果; (c) 仿真导纳曲线图

    Fig. 22.  Measurement and comparison of input impedance and resonant frequency of the optimized system: (a) Measurement process; (b) measurement results; (c) simulation admittance curve.

    图 23  振幅分布的测量 (a) 测量过程; (b) 未优化系统的测量结果; (c) 优化后系统的测量结果

    Fig. 23.  Measurement of amplitude distribution: (a) Measurement process; (b) measurement results of non-optimized systems; (c) measurement results of the optimized system.

    图 24  加工的两套系统的辐射面位移振幅对比图

    Fig. 24.  Displacement amplitude comparison diagram of the radiation surface of the two systems processed.

    表 1  系统的材料和结构参数表

    Table 1.  Material and structural parameter table of the system.

    部件 材料属性 形状 大端半径(长)/mm 小端半径(宽)/mm 高度/mm
    换能器前盖板 Aluminum 6063-T83 等截面圆柱 25 25 56
    换能器压电陶瓷片(两片) PZT-4 等截面圆环 25 25 6
    换能器后盖板 Aluminum 6063-T83 等截面圆柱 25 25 56
    复合变幅杆圆柱部分 Aluminum 6063-T83 等截面圆柱 25 25 77
    复合变幅杆圆锥部分 Aluminum 6063-T83 圆锥 25 20 45
    工具头 Aluminum 6063-T83 长方体 180 106 111
    下载: 导出CSV
  • [1]

    周光平, 梁明军, 王家宣 2004 声学技术 2004 183Google Scholar

    Zhou G P, Liang M J, Wang J X 2004 Tech. Acous. 2004 183Google Scholar

    [2]

    Mori E, Itoh K, Imamura A 1995 J. Acous. Soc. Jpn. 51 455Google Scholar

    [3]

    Lin S 1995 Appl. Acous. 44 249Google Scholar

    [4]

    Ren S C 1983 Acta Acus. 1 152Google Scholar

    [5]

    Lin S 2009 IEEE Trans. Ultra. Ferr. Freq Cont. 56 1990.Google Scholar

    [6]

    俞宏沛 1994 声学与电子工程 1994 9

    Yu H P 1994 Acous. Elec. Engi. 1994 9

    [7]

    周利生 1993 声学与电子工程 1993 28

    Zhou L S 1993 Acous. Elec. Engi. 1993 28

    [8]

    周利生 1993 声学与电子工程 1993 16

    Zhou L S 1993 Acous. Elec. Engi. 1993 16

    [9]

    林书玉, 张福成 1992 声学学报 1992 451

    Lin S Y, Zhang F C 1991 J. Acous. 1992 451

    [10]

    林书玉, 张福成 1991 应用声学 1991 10Google Scholar

    Lin S Y, Zhang F C 1991 Appl. Acous. 1991 10Google Scholar

    [11]

    林书玉, 张福成, 郭孝武 1991 声学学报 1991 91Google Scholar

    Lin S Y, Zhang F C Guo X W 1991 J. Acous. 1991 91Google Scholar

    [12]

    Lucas M, Smith A C 1997 J. Vibr. Acous. 119 410Google Scholar

    [13]

    Cardoni A, Lucas M 2002 Ultrasonics 40 365Google Scholar

    [14]

    Kumar R D, Rani M R, Elangovan S 2014 Appl. Mech. Mater. 592-594 859Google Scholar

    [15]

    Yeon J L, Muhammad B S, Dong S P 2019 MATEC Web Conf. 257 1Google Scholar

    [16]

    Adachi K, Ueha S 1990 J. Acous. Soc. Am. 87 208Google Scholar

    [17]

    Thanh H N, Quang T Q, Cong L T 2017 IOP Conference Series:Materials Science and Engineering 241 1Google Scholar

    [18]

    Rani M R, Prakasan K, Rudramoorthy R 2014 Int. J. Des. 5 344Google Scholar

    [19]

    程存弟 1991 应用声学 10 44Google Scholar

    Chen C D 1991 Appl. Acous. 10 44Google Scholar

    [20]

    林书玉, 张福成 1992 声学技术 11 24Google Scholar

    Lin S Y, Zhang F C 1992 Tech. Acous. 11 24Google Scholar

    [21]

    梁召峰, 周光平, 莫喜平, 张亦慧, 李正中 2008 机械科学与技术 27 334Google Scholar

    Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2008 Mech. Sci. Tech. 27 334Google Scholar

    [22]

    梁召峰, 周光平, 莫喜平, 李正中 2009 工程设计学报 16 200Google Scholar

    Liang Z F, Zhou G P, Mo X P, Zhang Y H, Li Z Z 2009 Journal of Engineering Design 16 200Google Scholar

    [23]

    成桢, 郭建中 2010 声学技术 29 103

    Chen Z, Guo J Z 2010 Tech. Acous. 29 103

    [24]

    赵甜甜, 林书玉, 段祎林 2018 物理学报 67 024303Google Scholar

    Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 024303Google Scholar

    [25]

    王莎, 林书玉 2019 物理学报 68 173Google Scholar

    Wang S, Lin S Y 2019 Acta Phys. Sin. 68 173Google Scholar

    [26]

    Wang S, Lin S Y 2019 Ultrasonics 99 105954.Google Scholar

    [27]

    Lin J Y, Lin S Y 2020 Crystals 10 1Google Scholar

    [28]

    Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617 [赵言诚, 赵芳, 苑立波 2006 哈尔滨工程大学学报 2006 617]Google Scholar

    Zhao Y C, Zhao F, Yuan L B 2006 J. Harbin Eng. Univ. 2006 617Google Scholar

    [29]

    Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517 [赵芳, 苑立波 2006 物理学报 2 517]Google Scholar

    Zhao F, Wan L B 2006 Acta Phys. Sin. 2 517Google Scholar

    [30]

    何姣 2013 博士学位论文 (昆明: 云南师范大学)

    He J 2013 Ph. D. Dissertation (Kunming: Yunnan Normal University

    [31]

    魏琦, 程营, 刘晓峻 2011 物理学报 60 124301Google Scholar

    Wei Q, Cheng Y, Liu X J 2011 Acta Phys. Sin. 60 124301Google Scholar

  • [1] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算. 物理学报, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] 左馨怡, 雷照康, 武耀蓉, 王成会. 黏弹性介质包裹的液体腔内球状泡群耦合振动模型. 物理学报, 2024, 73(15): 154301. doi: 10.7498/aps.73.20240606
    [3] 许龙, 汪尧. 双泡耦合声空化动力学过程模拟. 物理学报, 2023, 72(2): 024303. doi: 10.7498/aps.72.20221571
    [4] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2022, 71(3): 036501. doi: 10.7498/aps.71.20211434
    [5] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊(Jun Wang), 邹 宇, 付宝勤(Baoqin Fu). 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211434
    [6] 李明阳, 张雷敏, 吕沙沙, 李正操. 离子辐照和氧化对IG-110核级石墨中的点缺陷的影响. 物理学报, 2019, 68(12): 128102. doi: 10.7498/aps.68.20190371
    [7] 谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振. 点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战. 物理学报, 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [8] 莫润阳, 王成会, 胡静, 陈时. 双气泡振子系统的非线性声响应特性分析. 物理学报, 2019, 68(14): 144302. doi: 10.7498/aps.68.20190408
    [9] 孙伟彬, 王婷, 孙小伟, 康太凤, 谭自豪, 刘子江. 新型二维三组元压电声子晶体板的缺陷态及振动能量回收. 物理学报, 2019, 68(23): 234206. doi: 10.7498/aps.68.20190260
    [10] 赵甜甜, 林书玉, 段祎林. 类声子晶体结构对超声塑料焊接工具横向振动的抑制. 物理学报, 2018, 67(22): 224207. doi: 10.7498/aps.67.20181150
    [11] 王成会, 莫润阳, 胡静. 低频超声空化场中柱状泡群内气泡的声响应. 物理学报, 2016, 65(14): 144301. doi: 10.7498/aps.65.144301
    [12] 张越, 赵剑, 董鹏, 田达晰, 梁兴勃, 马向阳, 杨德仁. 掺杂剂对重掺n型直拉硅片的氧化诱生层错生长的影响. 物理学报, 2015, 64(9): 096105. doi: 10.7498/aps.64.096105
    [13] 王成会, 莫润阳, 胡静, 陈时. 球状泡群内气泡的耦合振动. 物理学报, 2015, 64(23): 234301. doi: 10.7498/aps.64.234301
    [14] 吉川, 徐进. 点缺陷对硼掺杂直拉硅单晶p/p+ 外延片中铜沉淀的影响. 物理学报, 2012, 61(23): 236102. doi: 10.7498/aps.61.236102
    [15] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [16] 魏琦, 程营, 刘晓峻. 点缺陷阵列对声子晶体波导定向辐射性能的影响. 物理学报, 2011, 60(12): 124301. doi: 10.7498/aps.60.124301
    [17] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究. 物理学报, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [19] 宜晨虹, 慕青松, 苗天德. 带有点缺陷的二维颗粒系统离散元模拟. 物理学报, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [20] 李晓春, 易秀英, 肖清武, 梁宏宇. 三组元声子晶体中的缺陷态. 物理学报, 2006, 55(5): 2300-2305. doi: 10.7498/aps.55.2300
计量
  • 文章访问数:  1877
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-02
  • 修回日期:  2024-01-26
  • 上网日期:  2024-01-30
  • 刊出日期:  2024-04-20

/

返回文章
返回