搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氧化镓悬臂式薄膜日盲探测器及其电弧检测应用

张裕 刘瑞文 张京阳 焦斌斌 王如志

引用本文:
Citation:

氧化镓悬臂式薄膜日盲探测器及其电弧检测应用

张裕, 刘瑞文, 张京阳, 焦斌斌, 王如志

Gallium oxide cantilevered thin film-based solar-blind photodetector and its arc detection applications

Zhang Yu, Liu Rui-Wen, Zhang Jing-Yang, Jiao Bin-Bin, Wang Ru-Zhi
PDF
HTML
导出引用
  • 金属-半导体-金属(MSM)型氧化镓薄膜探测器的性能高度依赖于氧化镓薄膜的均匀性, 工艺难度较高, 对规模化、量产化薄膜探测器提出了挑战. 本文首次在量产化悬臂式薄膜芯片表面物理沉积氧化镓薄膜, 实现了一个五对叉指电极结构的MSM型氧化镓薄膜日盲探测器. 得益于微机电系统(MEMS)工艺制备的悬臂式电极结构保护了内部电路与探测薄膜的完整均匀性, 所获得的氧化镓薄膜虽然是非晶结构, 但探测器仍然具备良好的紫外探测性能. 在18 V偏压下其探测率达到7.9×1010 Jones, 外量子效率达到1779%, 上升和下降时间分别为1.22 s和0.24 s, 接近晶体氧化镓薄膜的探测性能. 该探测器在无任何光学聚焦系统的情况下, 实现了对户外日光环境下脉冲电弧的灵敏检测, 将在日盲探测领域具有良好的潜在应用价值. 本工作基于MEMS工艺的悬臂式电极结构开发的敏感功能薄膜沉积技术, 避免了功能薄膜大面积均匀性对刻蚀电路的影响, 为MSM型薄膜探测器的制备提供了新的技术方法和工艺路线.
    The performance of gallium oxide (Ga2O3) thin film detector based on metal-semiconductor-metal (MSM) is highly dependent on the uniformity of the Ga2O3 thin film, and the manufacturing process is quite sophisticated, which poses a challenge for the scale-up and mass production of thin film photodetectors. In this work, an MSM Ga2O3 thin film solar-blind photodetector with five-finger interdigital electrodes is fabricated by physically depositing Ga2O3 thin film on the surface of a mass-produced cantilevered thin film chip. Through the microelectromechanical system (MEMS) process, the cantilever electrode structure is prepared, which protects the internal circuit and the integrity of the thin film. The Ga2O3 thin film treated by argon plasma at a low temperature is amorphous, but the photodetector still possesses considerable ultraviolet detection performance. At a bias voltage of 18 V, it approaches the detection performance of crystalline Ga2O3 thin film, with a detectivity of 7.9×1010 Jones, an external quantum efficiency of 1779%, rise time and decay time of 1.22 s and 0.24 s, respectively. Moreover, a system of arc detection is built in outdoor environments. Without any optical focusing system, this photodetector achieves sensitive detection of pulsed arc in an outdoor sunlight environments. For pulsed arcs with an output voltage of 100 kV, the photodetector is capable of sensitive detection at a distance of 25 cm. Besides, the maximum detection distance of 155 cm indicates that the photodetector will have a favorable potential application value in the field of solar-blind detection. This work develops a sensitive functional thin film deposition technology based on the cantilever electrode structure fabricated by the MEMS process, which avoids the influence of the large-area uniformity of the functional thin film on the etching circuit. It provides a new technical approach and process route for preparing MSM photodetectors.
      通信作者: 王如志, wrz@bjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3500403)资助的课题.
      Corresponding author: Wang Ru-Zhi, wrz@bjut.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3500403).
    [1]

    Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L, Luo L B, Wu Y C 2019 Adv. Funct. Mater. 29 1806006Google Scholar

    [2]

    Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar

    [3]

    Chen M X, Zhao B, Hu G F, Fang X S, Wang H, Wang L, Luo J, Han X, Wang X D, Pan C F, Wang Z L 2018 Adv. Funct. Mater. 28 1706379Google Scholar

    [4]

    Sheoran H, Kumar V, Singh R 2022 ACS Appl. Electron. Mater. 4 2589Google Scholar

    [5]

    Yan Z Y, Li S, Liu Z, Zhi Y S, Dai J, Sun X Y, Sun S Y, Guo D Y, Wang X, Li P G, Wu Z P, Li L L, Tang W H 2020 J. Mater. Chem. C 8 4502Google Scholar

    [6]

    Yan Z Y, Li S, Liu Z, Liu W J, Qiao F, Li P G, Tang X, Li X H, Yue J Y, Guo Y F, Tang W H 2022 IEEE J. Sel. Top. Quantum Electron. 28 3803208Google Scholar

    [7]

    Liu Z, Li S, Yan Z Y, Liu Y Y, Zhi Y S, Wang X, Wu Z P, Li P G, Tang W H 2020 J. Mater. Chem. C 8 5071Google Scholar

    [8]

    Yan Z Y, Li S, Yue J Y, Liu Z, Ji X Q, Yang Y, Li P G, Wu Z P, Guo Y, Tang W H 2021 ACS Appl. Mater. Interfaces 13 57619Google Scholar

    [9]

    Li S, Guo D Y, Li P G, Wang X, Wang Y, Yan Z Y, Liu Z, Zhi Y S, Huang Y, Wu Z P, Tang W H 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [10]

    Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X, Guo D Y, Li P G, Wu Z P, Tang W H 2021 J. Phys. Chem. Lett. 12 447Google Scholar

    [11]

    Fu S, Wang Y, Gao C, Han Y, Fu R, Wang L, Li B, Ma J, Fu Z, Xu H, Liu Y 2023 IEEE Electron Device Lett. 44 1428Google Scholar

    [12]

    Li X, Xu F, Wang X, Luo J, Ding K, Ye L, Li H, Xiong Y, Yu P, Kong C, Ye L, Zhang H, Li W 2023 Phys. Status Solidi RRL DOI:10.1002/pssr.202200512

    [13]

    王江, 罗林保 2021 中国激光 48 7Google Scholar

    Wang J, Luo L B 2021 Chin. J. Lasers 48 7Google Scholar

    [14]

    Gao C, Wang Y, Fu S, Xia D, Han Y, Ma J, Xu H, Li B, Shen A, Liu Y 2023 ACS Appl. Mater. Interfaces 15 38612Google Scholar

    [15]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [16]

    Ni S, Chen Q, Liu J, Yang S, Li T, Yang X, Zhao J 2019 J. Power Sources 433 126681Google Scholar

    [17]

    Prabakar K, Venkatachalam S, Jeyachandran Y L, Narayandass S K, Mangalaraj D 2004 Mater. Sci. Eng. B 107 99Google Scholar

    [18]

    Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M 2015 Jpn. J. Appl. Phys. 54 112601Google Scholar

    [19]

    Li S, Yue J Y, Ji X Q, Lu C, Yan Z Y, Li P G, Guo D Y, Wu Z P, Tang W H 2021 J. Mater. Chem. C 9 5437Google Scholar

    [20]

    Chen Y C, Lu Y J, Liao M Y, Tian Y Z, Liu Q, Gao C J, Yang X, Shan C X 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [21]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [22]

    Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435Google Scholar

    [23]

    Lu Y C, Zhang Z F, Yang X, He G H, Lin C N, Chen X X, Zang J H, Zhao W B, Chen Y C, Zhang L L, Li Y Z, Shan C X 2022 Nano Res. 15 7631Google Scholar

    [24]

    Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [25]

    Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y, Du G 2018 RSC Adv. 8 6341Google Scholar

    [26]

    Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar

    [27]

    Sun P, Yang X, Li K, Wei Z, Fan W, Wang S, Zhou W, Shan C 2023 Adv. Mater. Interfaces DOI: 10.1002/admi.202300371

    [28]

    Xu R, Ma X, Chen Y, Mei Y, Ying L, Zhang B, Long H 2022 Mater. Sci. Semicond. Process. 144 106621Google Scholar

    [29]

    He M, Zeng Q, Ye L 2023 Crystals 13 1434Google Scholar

    [30]

    Zhang C, Liu K, Ai Q, Huang X, Chen X, Zhu Y, Yang J, Cheng Z, Li B, Liu L, Shen D 2022 J. Phys. Chem. C 126 21839Google Scholar

    [31]

    Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens F H, Konstantatos G 2015 Adv. Mater. 27 176Google Scholar

    [32]

    况丹, 徐爽, 史大为, 郭建, 喻志农 2023 物理学报 72 038501Google Scholar

    Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar

    [33]

    Yu J, Lou J, Wang Z, Ji S, Chen J, Yu M, Peng B, Hu Y, Yuan L, Zhang Y, Jia R 2021 J. Alloys Compd. 872 159508Google Scholar

    [34]

    Gu K Y, Zhang Z L, Huang H F, Tang K, Huang J, Liao M Y, Wang L J 2023 J. Mater. Chem. C 11 5371Google Scholar

    [35]

    落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 物理学报 72 028502Google Scholar

    Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar

    [36]

    Xi Z Y, Yang L L, Shu L C, Zhang M L, Li S, Shi L, Liu Z, Guo Y F, Tang W H 2023 Chin. Phys. B 32 088502Google Scholar

    [37]

    Wang J, Xiong Y, Ye L, Li W, Qin G, Ruan H, Zhang H, Fang L, Kong C, Li H 2021 Opt. Mater. 112 110808Google Scholar

    [38]

    Ren Q, Xu W, Shen Z, You T, Liu Q, Liu C, Zhao L, Chen L, Yu W 2020 ACS Appl. Electron. Mater. 3 451Google Scholar

    [39]

    Almaev A, Nikolaev V, Kopyev V, Shapenkov S, Yakovlev N, Kushnarev B, Pechnikov A, Deng J, Izaak T, Chikiryaka À, Scheglov M, Zarichny A 2023 IEEE Sens. J. 23 19245Google Scholar

    [40]

    Zhang M, Ma W, Li S, Yang L, Liu Z, Guo Y, Tang W H 2023 IEEE Trans. Electron Devices 70 2336Google Scholar

    [41]

    Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503Google Scholar

  • 图 1  Ga2O3薄膜的(a) XRD图谱、(b) SEM图像、(c) EDS图谱、(d) XPS能谱、(e) Ga 2p能谱、(f) AFM图谱和(g) 光吸收曲线; 图(g)插图显示了$ (\alpha h\nu {)}^{2} $与$ h\nu $的光学带隙图.

    Fig. 1.  (a) XRD pattern, (b) SEM image, (c) EDS pattern, (d) XPS energy spectrum, (e) Ga 2p spectrum, (f) AFM pattern, (g) optical absorption curve of Ga2O3 thin film. The inset in panel (g) shows the curve of $ (\alpha h\nu {)}^{2} $ versus $ h\nu $ for the determination of the optical band gap of Ga2O3 thin film.

    图 2  (a) Ga2O3薄膜探测器的实物照片; (b) 悬臂式薄膜芯片的结构示意图; (c) 图(b)红色框中的叉指电极SEM图像; (d) 图(b)红色框中叉指电极的详细结构示意图

    Fig. 2.  (a) Physical photograph of Ga2O3 thin film-based photodetector; (b) schematic of the structure of the cantilevered thin film chip; (c) the SEM image of interdigital electrodes in the red box in panel (b); (d) the detailed schematic structure of interdigital electrodes in the red box in panel (b).

    图 3  Ga2O3薄膜探测器 (a) 在黑暗和254 nm光照下的I-V曲线; (b) 254 nm和365 nm光照下的动态响应曲线; (c) 在18 V偏压下不同光照强度的动态响应曲线; (d) 光电流与光强的关系; (e) 上升/下降曲线; (f) 数十个操作周期切换

    Fig. 3.  Ga2O3 thin film detector: (a) I-V curves of the photodetector in the dark and under 254 nm illumination; (b) I-t curves operated at 254 nm and 365 nm illumination (2.08 mW/cm2); (c) I-t curves of the photodetector under different light intensities of 254 nm with a bias voltage of 18 V; (d) photocurrent versus light intensity; (e) rise/decay curves; (f) over tens of operation cycles.

    图 4  (a) 户外电弧检测系统; 电弧与探测器距离(b) 25 cm, (c) 155 cm, (d) 165 cm的响应曲线

    Fig. 4.  (a) Outdoor arc detection system; response curves for the arc to detector distances of (b) 25 cm, (c) 155 cm and (d) 165 cm.

    表 1  MSM型Ga2O3薄膜光电探测器的光响应参数比较

    Table 1.  Comparison of photoresponse parameters of MSM type photodetectors based on Ga2O3 thin film.

    制备方法 偏压/V 暗电流/nA PDCR R/(A·W–1) D*/Jones EQE/% $ {\tau }_{{\mathrm{r}}}/ $s $ {\tau }_{{\mathrm{d}}} $/s Ref.
    MOCVD、磁控溅射 10 0.17 3.5$ \times $103 9.4 1.17$ \times $1012 4.6$ \times $103 27 3.93 [28]
    离子切割、光刻工艺 10 0.0287 953 0.13 2.96/34.17 1.94/32.64 [38]
    脉冲激光沉积、磁控溅射 –15 12.4 29.08 2.16$ \times $1011 1.4$ \times $104 0.41/0.52 1.06/1.68 [33]
    卤化物气相外延、
    真空沉积和光刻工艺
    10 10–2 7$ \times $104 1.12$ \times $1018 3.79$ \times $105 [39]
    MOCVD、磁控溅射 5 $ < $10–3 1.1$ \times $106 0.046 3.4$ \times $1013 22.4 0.96 0.19 [40]
    MOCVD、光刻和离子束溅射 10 1.9$ \times $10–3 8.97$ \times $107 634.15 5.93$ \times $1011 3.1$ \times $105 [41]
    MEMS工艺、磁控溅射 18 1.3 130 0.364 7.9$ \times $1010 1779 1.22 0.24 This work
    下载: 导出CSV
  • [1]

    Xie C, Lu X T, Tong X W, Zhang Z X, Liang F X, Liang L, Luo L B, Wu Y C 2019 Adv. Funct. Mater. 29 1806006Google Scholar

    [2]

    Wu Z P, Jiao L, Wang X L, Guo D Y, Li W H, Li L H, Huang F, Tang W H 2017 J. Mater. Chem. C 5 8688Google Scholar

    [3]

    Chen M X, Zhao B, Hu G F, Fang X S, Wang H, Wang L, Luo J, Han X, Wang X D, Pan C F, Wang Z L 2018 Adv. Funct. Mater. 28 1706379Google Scholar

    [4]

    Sheoran H, Kumar V, Singh R 2022 ACS Appl. Electron. Mater. 4 2589Google Scholar

    [5]

    Yan Z Y, Li S, Liu Z, Zhi Y S, Dai J, Sun X Y, Sun S Y, Guo D Y, Wang X, Li P G, Wu Z P, Li L L, Tang W H 2020 J. Mater. Chem. C 8 4502Google Scholar

    [6]

    Yan Z Y, Li S, Liu Z, Liu W J, Qiao F, Li P G, Tang X, Li X H, Yue J Y, Guo Y F, Tang W H 2022 IEEE J. Sel. Top. Quantum Electron. 28 3803208Google Scholar

    [7]

    Liu Z, Li S, Yan Z Y, Liu Y Y, Zhi Y S, Wang X, Wu Z P, Li P G, Tang W H 2020 J. Mater. Chem. C 8 5071Google Scholar

    [8]

    Yan Z Y, Li S, Yue J Y, Liu Z, Ji X Q, Yang Y, Li P G, Wu Z P, Guo Y, Tang W H 2021 ACS Appl. Mater. Interfaces 13 57619Google Scholar

    [9]

    Li S, Guo D Y, Li P G, Wang X, Wang Y, Yan Z Y, Liu Z, Zhi Y S, Huang Y, Wu Z P, Tang W H 2019 ACS Appl. Mater. Interfaces 11 35105Google Scholar

    [10]

    Li S, Zhi Y S, Lu C, Wu C, Yan Z Y, Liu Z, Yang J, Chu X, Guo D Y, Li P G, Wu Z P, Tang W H 2021 J. Phys. Chem. Lett. 12 447Google Scholar

    [11]

    Fu S, Wang Y, Gao C, Han Y, Fu R, Wang L, Li B, Ma J, Fu Z, Xu H, Liu Y 2023 IEEE Electron Device Lett. 44 1428Google Scholar

    [12]

    Li X, Xu F, Wang X, Luo J, Ding K, Ye L, Li H, Xiong Y, Yu P, Kong C, Ye L, Zhang H, Li W 2023 Phys. Status Solidi RRL DOI:10.1002/pssr.202200512

    [13]

    王江, 罗林保 2021 中国激光 48 7Google Scholar

    Wang J, Luo L B 2021 Chin. J. Lasers 48 7Google Scholar

    [14]

    Gao C, Wang Y, Fu S, Xia D, Han Y, Ma J, Xu H, Li B, Shen A, Liu Y 2023 ACS Appl. Mater. Interfaces 15 38612Google Scholar

    [15]

    刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华 2022 物理学报 71 208501Google Scholar

    Liu Z, Li L, Zhi Y S, Du L, Fang J P, Li S, Yu J G, Zhang M L, Yang L L, Zhang S H, Guo Y F, Tang W H 2022 Acta Phys. Sin. 71 208501Google Scholar

    [16]

    Ni S, Chen Q, Liu J, Yang S, Li T, Yang X, Zhao J 2019 J. Power Sources 433 126681Google Scholar

    [17]

    Prabakar K, Venkatachalam S, Jeyachandran Y L, Narayandass S K, Mangalaraj D 2004 Mater. Sci. Eng. B 107 99Google Scholar

    [18]

    Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M 2015 Jpn. J. Appl. Phys. 54 112601Google Scholar

    [19]

    Li S, Yue J Y, Ji X Q, Lu C, Yan Z Y, Li P G, Guo D Y, Wu Z P, Tang W H 2021 J. Mater. Chem. C 9 5437Google Scholar

    [20]

    Chen Y C, Lu Y J, Liao M Y, Tian Y Z, Liu Q, Gao C J, Yang X, Shan C X 2019 Adv. Funct. Mater. 29 1906040Google Scholar

    [21]

    Chen Y C, Lu Y J, Liu Q, Lin C N, Guo J, Zang J H, Tian Y Z, Shan C X 2019 J. Mater. Chem. C 7 2557Google Scholar

    [22]

    Zhi Y S, Liu Z, Zhang S H, Li S, Yan Z Y, Li P G, Tang W H 2021 IEEE Trans. Electron Devices 68 3435Google Scholar

    [23]

    Lu Y C, Zhang Z F, Yang X, He G H, Lin C N, Chen X X, Zang J H, Zhao W B, Chen Y C, Zhang L L, Li Y Z, Shan C X 2022 Nano Res. 15 7631Google Scholar

    [24]

    Pearton S J, Yang J, Cary P H, Ren F, Kim J, Tadjer M J, Mastro M A 2018 Appl. Phys. Rev. 5 011301Google Scholar

    [25]

    Yang C, Liang H, Zhang Z, Xia X, Tao P, Chen Y, Zhang H, Shen R, Luo Y, Du G 2018 RSC Adv. 8 6341Google Scholar

    [26]

    Arora K, Goel N, Kumar M, Kumar M 2018 ACS Photonics 5 2391Google Scholar

    [27]

    Sun P, Yang X, Li K, Wei Z, Fan W, Wang S, Zhou W, Shan C 2023 Adv. Mater. Interfaces DOI: 10.1002/admi.202300371

    [28]

    Xu R, Ma X, Chen Y, Mei Y, Ying L, Zhang B, Long H 2022 Mater. Sci. Semicond. Process. 144 106621Google Scholar

    [29]

    He M, Zeng Q, Ye L 2023 Crystals 13 1434Google Scholar

    [30]

    Zhang C, Liu K, Ai Q, Huang X, Chen X, Zhu Y, Yang J, Cheng Z, Li B, Liu L, Shen D 2022 J. Phys. Chem. C 126 21839Google Scholar

    [31]

    Kufer D, Nikitskiy I, Lasanta T, Navickaite G, Koppens F H, Konstantatos G 2015 Adv. Mater. 27 176Google Scholar

    [32]

    况丹, 徐爽, 史大为, 郭建, 喻志农 2023 物理学报 72 038501Google Scholar

    Kuang D, Xu S, Shi D W, Guo J, Yu Z N 2023 Acta Phys. Sin. 72 038501Google Scholar

    [33]

    Yu J, Lou J, Wang Z, Ji S, Chen J, Yu M, Peng B, Hu Y, Yuan L, Zhang Y, Jia R 2021 J. Alloys Compd. 872 159508Google Scholar

    [34]

    Gu K Y, Zhang Z L, Huang H F, Tang K, Huang J, Liao M Y, Wang L J 2023 J. Mater. Chem. C 11 5371Google Scholar

    [35]

    落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪 2023 物理学报 72 028502Google Scholar

    Luo J X, Gao H L, Deng J X, Ren J H, Zhang Q, Li R D, Meng X 2023 Acta Phys. Sin. 72 028502Google Scholar

    [36]

    Xi Z Y, Yang L L, Shu L C, Zhang M L, Li S, Shi L, Liu Z, Guo Y F, Tang W H 2023 Chin. Phys. B 32 088502Google Scholar

    [37]

    Wang J, Xiong Y, Ye L, Li W, Qin G, Ruan H, Zhang H, Fang L, Kong C, Li H 2021 Opt. Mater. 112 110808Google Scholar

    [38]

    Ren Q, Xu W, Shen Z, You T, Liu Q, Liu C, Zhao L, Chen L, Yu W 2020 ACS Appl. Electron. Mater. 3 451Google Scholar

    [39]

    Almaev A, Nikolaev V, Kopyev V, Shapenkov S, Yakovlev N, Kushnarev B, Pechnikov A, Deng J, Izaak T, Chikiryaka À, Scheglov M, Zarichny A 2023 IEEE Sens. J. 23 19245Google Scholar

    [40]

    Zhang M, Ma W, Li S, Yang L, Liu Z, Guo Y, Tang W H 2023 IEEE Trans. Electron Devices 70 2336Google Scholar

    [41]

    Liu Z, Zhi Y S, Zhang M L, Yang L L, Li S, Yan Z Y, Zhang S H, Guo D Y, Li P G, Guo Y F, Tang W H 2022 Chin. Phys. B 31 088503Google Scholar

  • [1] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [2] 董典萌, 汪成, 张清怡, 张涛, 杨永涛, 夏翰驰, 王月晖, 吴真平. 基于HfO2插层的Ga2O3基金属-绝缘体-半导体结构日盲紫外光电探测器. 物理学报, 2023, 72(9): 097302. doi: 10.7498/aps.72.20222222
    [3] 况丹, 徐爽, 史大为, 郭建, 喻志农. 基于铝纳米颗粒修饰的非晶氧化镓薄膜日盲紫外探测器. 物理学报, 2023, 72(3): 038501. doi: 10.7498/aps.72.20221476
    [4] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, 2023, 72(2): 028502. doi: 10.7498/aps.72.20221716
    [5] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2022, 71(3): 037301. doi: 10.7498/aps.71.20211536
    [6] 刘增, 李磊, 支钰崧, 都灵, 方君鹏, 李山, 余建刚, 张茂林, 杨莉莉, 张少辉, 郭宇锋, 唐为华. 具有大光电导增益的氧化镓薄膜基深紫外探测器阵列. 物理学报, 2022, 71(20): 208501. doi: 10.7498/aps.71.20220859
    [7] 玄鑫淼, 王加恒, 毛彦琦, 叶利娟, 张红, 李泓霖, 熊元强, 范嗣强, 孔春阳, 李万俊. 基于云母衬底生长的非晶Ga2O3柔性透明日盲紫外光探测器研究. 物理学报, 2021, 70(23): 238502. doi: 10.7498/aps.70.20211039
    [8] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [9] 周树仁, 张红, 莫慧兰, 刘浩文, 熊元强, 李泓霖, 孔春阳, 叶利娟, 李万俊. N掺杂对${\boldsymbol\beta} $-Ga2O3薄膜日盲紫外探测器性能的影响. 物理学报, 2021, 70(17): 178503. doi: 10.7498/aps.70.20210434
    [10] 汪海波, 万丽娟, 樊敏, 杨金, 鲁世斌, 张忠祥. 势垒可调的氧化镓肖特基二极管. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211536
    [11] 龙泽, 夏晓川, 石建军, 刘俊, 耿昕蕾, 张赫之, 梁红伟. 基于机械剥离β-Ga2O3的Ni/Au垂直结构肖特基器件的温度特性. 物理学报, 2020, 69(13): 138501. doi: 10.7498/aps.69.20200424
    [12] 郭道友, 李培刚, 陈政委, 吴真平, 唐为华. 超宽禁带半导体β-Ga2O3及深紫外透明电极、日盲探测器的研究进展. 物理学报, 2019, 68(7): 078501. doi: 10.7498/aps.68.20181845
    [13] 张镜水, 孔令琴, 董立泉, 刘明, 左剑, 张存林, 赵跃进. 太赫兹互补金属氧化物半导体场效应管探测器理论模型中扩散效应研究. 物理学报, 2017, 66(12): 127302. doi: 10.7498/aps.66.127302
    [14] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究. 物理学报, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [15] 郑丽霞, 吴金, 张秀川, 涂君虹, 孙伟锋, 高新江. InGaAs单光子探测器传感检测与淬灭方式. 物理学报, 2014, 63(10): 104216. doi: 10.7498/aps.63.104216
    [16] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [17] 马海林, 苏庆. 氧分压对溅射制备氧化镓薄膜结构及光学带隙的影响. 物理学报, 2014, 63(11): 116701. doi: 10.7498/aps.63.116701
    [18] 张孝富, 李豫东, 郭旗, 罗木昌, 何承发, 于新, 申志辉, 张兴尧, 邓伟, 吴正新. 60Coγ射线对高铝组分Al0.5Ga0.5N基p-i-n日盲型光探测器理想因子的影响. 物理学报, 2013, 62(7): 076106. doi: 10.7498/aps.62.076106
    [19] 潘惠平, 成枫锋, 李琳, 洪瑞华, 姚淑德. 蓝宝石衬底上生长的Ga2+xO3-x薄膜的结构分析. 物理学报, 2013, 62(4): 048801. doi: 10.7498/aps.62.048801
    [20] 常保和, 张 昊, 周维亚, 钱露茜, 潘正伟, 毛建民, 李文治. 对电弧放电制备的离散碳纳米管进行高温氧化的研究. 物理学报, 1998, 47(2): 340-345. doi: 10.7498/aps.47.340
计量
  • 文章访问数:  844
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-28
  • 修回日期:  2024-02-18
  • 上网日期:  2024-02-28
  • 刊出日期:  2024-05-05

/

返回文章
返回