搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

探究四聚体超表面中多极准连续域束缚态的调控机制

孟祥裕 李涛 余彬彬 邰永航

引用本文:
Citation:

探究四聚体超表面中多极准连续域束缚态的调控机制

孟祥裕, 李涛, 余彬彬, 邰永航

Exploring the tuning mechanism of multipolar quasi-continuous domain bound states in tetramer metasurface

Meng Xiang-Yu, Li Tao, Yu Bin-Bin, Tai Yong-Hang
PDF
HTML
导出引用
  • 本文设计了由四聚长方体组成的全介质超表面, 其中每个长方体刻蚀两个椭圆柱并填装空气. 当分别为超表面单独引入面内对称破缺、位移扰动和周期扰动时, 可在近红外波段产生稳健的准连续域束缚态模式(quasi-bound states in the continuum). 通过测量准BIC (quasi-BIC)模式的谐振波长, 计算准BIC模式的Q因子(quality factor)与不对称参数的关系, 可进一步证实不对称参数对准BIC共振频率和Q因子的可调谐性. 在此基础上, 当同时引入面内对称破缺、位移扰动和周期扰动时, 可获得5个高Q因子的准BIC模式. 共振峰的数量、位置以及Q因子都可通过调整面内破缺、位移扰动和周期扰动的程度进行调控. 该超表面的设计可为传感器的多参数传感以及灵敏度等性能的提升提供一种全新思路.
    High-quality factor (high-Q) resonance has broad prospects in applications such as in narrow-band filtering, slow-light devices, and nonlinear optics interaction enhanced to highly sensitive sensing. Previous methods of designing high-Q resonance suffered intrinsic drawbacks such as high-volume cavities or large-scale bending radii. However, recently, a new approach to designing high-Q resonances has begun to attract public attention on the basis of asymmetric metasurfaces that are related to the bound states in the continuum (BIC) phenomenon. Constructing BIC resonance in electromagnetic metasurface can generate sharp resonant transmission peak. Therefore, there is growing interest in utilizing BIC to achieve metasurface with high-Q. However, most of existing studies are based on single BIC, and few studies focusing on multiband BICs and multiple forms of symmetry breaking. In this work, we propose an all-dielectric metasurface composed of tetrameric cuboids. By etching two elliptical cylinders in each cuboid, the metasurface can simultaneously support in-plane symmetry breaking, displacement perturbations and periodic perturbations. We first use multipole calculations to analyze the physical mechanism by which the metasurface generates quasi-BIC under these three conditions. It is confirmed that the Q factor and resonant peak position of quasi-BIC can be controlled by adjusting the asymmetry parameters. Subsequently, we introduce the in-plane symmetry breaking, displacement perturbations and periodic perturbations into the metasurface simultaneously and generate five quasi-BIC modes, whose numbers and positions can be flexibly adjusted, and the largest Q factor is 58039. In summary, this work provides a new practical design concept for realizing high-Q all-dielectric metasurfaces, which can be used to improve the sensitivity of multi-parameter sensors.
      通信作者: 余彬彬, pai3_14@ucas.ac.cn ; 邰永航, taiyonghang@ynnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62365017)、浙江省自然科学基金(批准号: LZ23A040004)和云南省优秀青年基金(批准号: 202301AW070001)资助的课题.
      Corresponding author: Yu Bin-Bin, pai3_14@ucas.ac.cn ; Tai Yong-Hang, taiyonghang@ynnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62365017), the Natural Science Foundation of Zhejiang Province, China (Grant No. LZ23A040004), and the Foundation for Excellent Young Scientists of Yunnan Province, China (Grant No. 202301AW070001).
    [1]

    von Neumann J, Wigner E P 1929 Phys. Z. 30 467

    [2]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510Google Scholar

    [3]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [4]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljacic M 2013 Nature 499 188Google Scholar

    [5]

    Urseel F 1997 Phys. Eng. Sci. 435 575

    [6]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [7]

    Xiao Y X, Ma G, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803Google Scholar

    [8]

    Retzler C H 2001 Appl. Ocean Res. 23 249Google Scholar

    [9]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2009 Europhys. Lett. 88 20006Google Scholar

    [10]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2011 J. Fluid Mech. 666 445Google Scholar

    [11]

    EVERY A G 2008 Phys. Rev. B 78 174104.Google Scholar

    [12]

    Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D Y, Neshev D N, Kivshar Y S, Altug H 2018 Science 360 1105Google Scholar

    [13]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [14]

    Chen S S, Zhang W X, Yang B, Wu T, Zhang X D 2019 Sci. Rep. 9 5551Google Scholar

    [15]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [16]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [17]

    Yu J B, Ma B Z, OuYang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290Google Scholar

    [18]

    Huang L J, Jin R, Zhou C B, et al. 2023 Nat. Commun. 14 3433Google Scholar

    [19]

    Zhou C B, Huang L J, Jin R, et al. 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [20]

    Koshelev K, Lepeshov S, Liu M K, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [21]

    Mikheeva E, Koshelev K, Choi D Y, Kruk S, Lumeau J, Abdeddaim R, Voznyuk I, Enoch S, Kivshar Y 2019 Opt. Express 27 33847Google Scholar

    [22]

    Chen X, Fan W H 2020 Nanomaterials 10 623Google Scholar

    [23]

    Cai Y P, Huang Y, Zhu K Y, Wu H H 2021 Opt. Lett. 46 4049Google Scholar

    [24]

    杨磊 2022 硕士学位论文 (北京: 北京邮电大学)

    Yang L 2022 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [25]

    Tang C J, Yan B, Wang Q G, Chen J, Yan Z D, Liu F X, Chen N B, Sui C H 2017 Sci. Rep. 7 582Google Scholar

    [26]

    Jin R, Huang L J, Zhou C B, et al. 2023 Nano Lett. 23 9105Google Scholar

    [27]

    Yu J B, Qin R, Ying Y B, Qiu M, Li Q 2023 Adv. Mat. 35 2302478Google Scholar

    [28]

    Chai R H, Liu W W, Li Z C, Cheng H, Tian J G, Chen S Q 2021 Phys. Rev. B 104 075149Google Scholar

  • 图 1  (a) 超表面单元平面俯视图; (b) x偏振光正入射超表面示意图

    Fig. 1.  (a) Top view of metasurface unit; (b) schematic of the metasurface with x-polarized normal incidence light.

    图 2  (a)面内破缺后超表面单元平面俯视图; (b)旋转角θ不同时, x偏振光入射对应的透射率曲线; (c)准BIC的Q因子随1/α2的变化曲线; (d)厚度h不同时, x偏振光入射对应的透射率曲线

    Fig. 2.  (a) Top view of the metasurface unit after in-plane symmetry perturbation; (b) transmittance spectra for x-polarized incident light and different rotation angle θ; (c) Q-factors of QBIC plotted as functions of 1/α2; (d) transmittance spectra for x-polarized incident light and different thickness h.

    图 3  (a) x偏振光入射时的多极分解结果, ED, MD, TD, EQ, MQ分别表示电偶极子、磁偶极子、环偶极子、电四极子、磁四极子; (b)磁偶极子的散射功率在x, y, z方向上的分量; (c) x-y平面的电磁场分布; (d) y-z平面的电磁场分布

    Fig. 3.  (a) Multipole decomposition results during x-polarized normal incidence light, ED, MD, TD, EQ, MQ represent electric dipole, magnetic dipole, toroidal dipole electric, quadrupole and magnetic quadrupole, respectively; (b) x, y and z components of the MD; (c) electromagnetic field distribution in the x-y plane; (d) electromagnetic field distribution in the y-z plane.

    图 4  (a)位移扰动后超表面单元平面俯视图; (b)参数Δg不同时, x偏振光入射对应的透射率曲线; (c)准BIC模式1的Q因子随1/β2的变化曲线; (d)准BIC模式2的Q因子随1/β2的变化曲线; (e)厚度h不同时, x偏振光入射对应的透射率曲线

    Fig. 4.  (a) Top view of the metasurface unit after displacement perturbation; (b) transmittance spectra for x-polarized incident light and different parameters Δg; (c) Q-factors of QBIC mode 1 plotted as functions of 1/β2; (d) Q-factors of QBIC mode 2 plotted as functions of 1/β2; (e) transmittance spectra for x-polarized incident light and different thickness h.

    图 5  (a) x偏振光入射时产生的准BIC模式1的多极分解结果; (b)准BIC模式1的磁偶极子的散射功率在x, y, z方向上的分量; (c)准BIC模式1在x-z平面的电磁场分布; (d)准BIC模式1在y-z平面的电磁场分布; (e) x偏振光入射时产生的准BIC模式2的多极分解结果; (f)准BIC模式2的环偶极子的散射功率在x, y, z方向上的分量; (g)准BIC模式2在x-y平面的电磁场分布; (h)准BIC模式2在y-z平面的电磁场分布

    Fig. 5.  (a) Multipole decomposition results of QBIC mode 1 during x-polarized normal incidence light; (b) components of the MD in the x, y, z directions of QBIC mode 1; (c) electromagnetic field distribution in the x-z plane of QBIC mode 1; (d) electromagnetic field distribution in the y-z plane of QBIC mode 1; (e) multipole decomposition results of QBIC mode 2 during x-polarized normal incidence light; (f) components of the TD in the x, y, z directions of QBIC mode 2; (g) electromagnetic field distribution in the x-y plane of QBIC mode 2; (h) electromagnetic field distribution in the y-z plane of QBIC mode 2.

    图 6  (a)当Px > Py时, 超表面单元平面俯视图; (b) Px不同时, x偏振光入射对应的透射率曲线; (c)准BIC模式的Q因子随$ 1/\gamma _2^2 $的变化曲线; (d)厚度h不同时, x偏振光入射对应的透射率曲线

    Fig. 6.  (a) When Px > Py, the top view of the metasurface unit; (b) transmittance spectra for x-polarized incident light and different Px; (c) Q-factors of QBIC plotted as functions of $ 1/\gamma _2^2 $; (d) transmittance spectra for x-polarized incident light and different thickness h.

    图 7  (a) x偏振光入射时的多极分解结果; (b)环偶极子的散射功率在x, y, z方向上的分量; (c) x-y平面的电磁场分布; (d) y-z平面的电磁场分布

    Fig. 7.  (a) Multipole decomposition results during x-polarized normal incidence light; (b) x, y and z components of the TD; (c) electromagnetic field distribution in the x-y plane; (d) electromagnetic field distribution in the y-z plane.

    图 8  (a)当Py > Px时, 超表面单元平面俯视图; (b) Py不同时, x偏振光入射对应的透射率曲线; (c)准BIC模式的Q因子随$ 1/\gamma _2^2 $的变化曲线; (d)厚度h不同时, x偏振光入射对应的透射率曲线

    Fig. 8.  (a) When Py > Px, the top view of the metasurface unit; (b) transmittance spectra for x-polarized incident light and different Py; (c) Q-factors of QBIC plotted as functions of $ 1/\gamma _2^2 $; (d) transmittance spectra for x-polarized incident light and different thickness h.

    图 9  (a) x偏振光入射时的多极分解结果; (b)环偶极子的散射功率在x, y, z方向上的分量; (c) x-y平面的电磁场分布; (d) y-z平面的电磁场分布

    Fig. 9.  (a) Multipole decomposition results during x-polarized normal incidence light; (b) x, y and z components of the TD; (c) electromagnetic field distribution in the x-y plane; (d) electromagnetic field distribution in the y-z plane.

    图 10  (a)超表面单元平面俯视图; (b) x偏振光入射对应的透射率曲线

    Fig. 10.  (a) Top view of the metasurface unit; (b) transmittance spectra for x-polarized incident light.

    图 11  (a) x偏振光入射时产生的准BIC模式1的多极分解结果; (b)准BIC模式1的磁偶极子的散射功率在x, y, z方向上的分量; (c)准BIC模式1在x-y平面的电磁场分布; (d)准BIC模式1在y-z平面的电磁场分布; (e) x偏振光入射时产生的准BIC模式2的多极分解结果; (f)准BIC模式2的磁偶极子的散射功率在x, y, z方向上的分量; (g)准BIC模式2在x-z平面的电磁场分布; (h)准BIC模式2在y-z平面的电磁场分布; (i) x偏振光入射时产生的准BIC模式3的多极分解结果; (j)准BIC模式3的环偶极子的散射功率在x, y, z方向上的分量; (k)准BIC模式3在x-y平面的电磁场分布; (l)准BIC模式3在y-z平面的电磁场分布; (m) x偏振光入射时产生的准BIC模式4的多极分解结果; (n)准BIC模式4的磁偶极子的散射功率在x, y, z方向上的分量; (o)准BIC模式4在x-y平面的电磁场分布; (p)准BIC模式4在y-z平面的电磁场分布; (q) x偏振光入射时产生的准BIC模式5的多极分解结果; (r)准BIC模式5的磁偶极子的散射功率在x, y, z方向上的分量; (s)准BIC模式5在x-y平面的电磁场分布; (t)准BIC模式5在y-z平面的电磁场分布

    Fig. 11.  (a) Multipole decomposition results of QBIC mode 1 during x-polarized normal incidence light; (b) Components of the MD in the x, y, z directions of QBIC mode 1; (c) electromagnetic field distribution in the x-y plane of QBIC mode 1; (d) electromagnetic field distribution in the y-z plane of QBIC mode 1; (e) multipole decomposition results of QBIC mode 2 during x-polarized normal incidence light; (f) components of the MD in the x, y, z directions of QBIC mode 2; (g) electromagnetic field distribution in the x-z plane of QBIC mode 2; (h) electromagnetic field distribution in the y-z plane of QBIC mode 2; (i) multipole decomposition results of QBIC mode 3 during x-polarized normal incidence light; (j) components of the TD in the x, y, z directions of QBIC mode 3; (k) electromagnetic field distribution in the x-y plane of QBIC mode 3; (l) Electromagnetic field distribution in the y-z plane of QBIC mode 3; (m) multipole decomposition results of QBIC mode 4 during x-polarized normal incidence light; (n) components of the MD in the x, y, z directions of QBIC mode 4; (o) electromagnetic field distribution in the x-y plane of QBIC mode 4; (p) electromagnetic field distribution in the y-z plane of QBIC mode 4; (q) Multipole decomposition results of QBIC mode 5 during x-polarized normal incidence light; (r) components of the MD in the x, y, z directions of QBIC mode 5; (s) electromagnetic field distribution in the x-y plane of QBIC mode 5; (t) electromagnetic field distribution in the y-z plane of QBIC mode 5.

  • [1]

    von Neumann J, Wigner E P 1929 Phys. Z. 30 467

    [2]

    Kaelberer T, Fedotov V A, Papasimakis N, Tsai D P, Zheludev N I 2010 Science 330 1510Google Scholar

    [3]

    Plotnik Y, Peleg O, Dreisow F, Heinrich M, Nolte S, Szameit A, Segev M 2011 Phys. Rev. Lett. 107 183901Google Scholar

    [4]

    Hsu C W, Zhen B, Lee J, Chua S L, Johnson S G, Joannopoulos J D, Soljacic M 2013 Nature 499 188Google Scholar

    [5]

    Urseel F 1997 Phys. Eng. Sci. 435 575

    [6]

    Porter R, Evans D V 2005 Wave Motion 43 29Google Scholar

    [7]

    Xiao Y X, Ma G, Zhang Z Q, Chan C T 2017 Phys. Rev. Lett. 118 166803Google Scholar

    [8]

    Retzler C H 2001 Appl. Ocean Res. 23 249Google Scholar

    [9]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2009 Europhys. Lett. 88 20006Google Scholar

    [10]

    Cobelli P J, Pagneux V, Maurel A, Petitjeans P 2011 J. Fluid Mech. 666 445Google Scholar

    [11]

    EVERY A G 2008 Phys. Rev. B 78 174104.Google Scholar

    [12]

    Tittl A, Leitis A, Liu M, Yesilkoy F, Choi D Y, Neshev D N, Kivshar Y S, Altug H 2018 Science 360 1105Google Scholar

    [13]

    Foley J M, Young S M, Phillips J D 2014 Phys. Rev. B 89 165111Google Scholar

    [14]

    Chen S S, Zhang W X, Yang B, Wu T, Zhang X D 2019 Sci. Rep. 9 5551Google Scholar

    [15]

    Zhang Y B, Liu W W, Li Z C, Li Z, Cheng H, Chen S, Tian J G 2018 Opt. Lett. 43 1842Google Scholar

    [16]

    Huo Y Y, Zhang X, Yan M, Sun K, Jiang S Z, Ning T Y, Zhao L N 2022 Opt. Express 30 19030Google Scholar

    [17]

    Yu J B, Ma B Z, OuYang A, Ghosh P, Luo H, Pattanayak A, Kaur S, Qiu M, Belov P, Li Q 2021 Optica 8 1290Google Scholar

    [18]

    Huang L J, Jin R, Zhou C B, et al. 2023 Nat. Commun. 14 3433Google Scholar

    [19]

    Zhou C B, Huang L J, Jin R, et al. 2023 Laser Photonics Rev. 17 2200564Google Scholar

    [20]

    Koshelev K, Lepeshov S, Liu M K, Bogdanov A, Kivshar Y 2018 Phys. Rev. Lett. 121 193903Google Scholar

    [21]

    Mikheeva E, Koshelev K, Choi D Y, Kruk S, Lumeau J, Abdeddaim R, Voznyuk I, Enoch S, Kivshar Y 2019 Opt. Express 27 33847Google Scholar

    [22]

    Chen X, Fan W H 2020 Nanomaterials 10 623Google Scholar

    [23]

    Cai Y P, Huang Y, Zhu K Y, Wu H H 2021 Opt. Lett. 46 4049Google Scholar

    [24]

    杨磊 2022 硕士学位论文 (北京: 北京邮电大学)

    Yang L 2022 M. S. Thesis (Beijing: Beijing University of Posts and Telecommunications

    [25]

    Tang C J, Yan B, Wang Q G, Chen J, Yan Z D, Liu F X, Chen N B, Sui C H 2017 Sci. Rep. 7 582Google Scholar

    [26]

    Jin R, Huang L J, Zhou C B, et al. 2023 Nano Lett. 23 9105Google Scholar

    [27]

    Yu J B, Qin R, Ying Y B, Qiu M, Li Q 2023 Adv. Mat. 35 2302478Google Scholar

    [28]

    Chai R H, Liu W W, Li Z C, Cheng H, Tian J G, Chen S Q 2021 Phys. Rev. B 104 075149Google Scholar

  • [1] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [2] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [3] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [4] 刘会刚, 张翔宇, 南雪莹, 赵二刚, 刘海涛. 基于准连续域束缚态的全介质超构表面双参数传感器. 物理学报, 2024, 73(4): 047802. doi: 10.7498/aps.73.20231514
    [5] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [6] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [7] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [8] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [9] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [10] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [11] 杜芊, 陈溢杭. 硅纳米颗粒阵列中准连续域束缚态诱导三次谐波增强效应. 物理学报, 2021, 70(15): 154206. doi: 10.7498/aps.70.20210332
    [12] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [13] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 丰茂昌, 李勇峰, 张介秋, 王甲富, 王超, 马华, 屈绍波. 一种宽角域散射增强超表面的研究. 物理学报, 2018, 67(19): 198101. doi: 10.7498/aps.67.20181053
    [16] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] 张莹, 雷佑铭, 方同. 混沌吸引子的对称破缺激变. 物理学报, 2009, 58(6): 3799-3805. doi: 10.7498/aps.58.3799
计量
  • 文章访问数:  2387
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 修回日期:  2024-03-05
  • 上网日期:  2024-04-02
  • 刊出日期:  2024-05-20

/

返回文章
返回