搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Zn2+和TiO2合金化过程中不同成分占比对薄膜结构和光催化性能的影响

肖文悦 董小硕 买买提热夏提·买买提 牛娜娜 李国栋 朱泽涛 毕杰昊

引用本文:
Citation:

Zn2+和TiO2合金化过程中不同成分占比对薄膜结构和光催化性能的影响

肖文悦, 董小硕, 买买提热夏提·买买提, 牛娜娜, 李国栋, 朱泽涛, 毕杰昊
cstr: 32037.14.aps.73.20240814

Effects of different compositional ratios on physical structure and optical properties of thin films during alloying of Zn2+ and TiO2

Xiao Wen-Yue, Dong Xiao-Shuo, Mamatrishat Mamat, Niu Na-Na, Li Guo-Dong, Zhu Ze-Tao, Bi Jie-Hao
cstr: 32037.14.aps.73.20240814
PDF
HTML
导出引用
  • 使用溶胶-凝胶法在单晶硅衬底上制备一批不同Zn2+成分调节的TiO2薄膜, 观测Zn2+和TiO2合金化过程中光学和光催化性能的变化. X射线衍射光谱仪用于观测在合金化过程中薄膜的晶体结构变化并追踪ZnTiO3化合物的形成. 扫描电子显微镜、原子力显微镜用于观测合金化过程中因TiO2晶格对Zn2+溶解度有限而导致薄膜表面出现大量孔洞的现象. X射线光电子能谱和光学带隙用于观测Zn2+与TiO2合金化过程中电子结构层面的变化. 最后, 通过降解亚甲基蓝(MB)溶液, 表明少量Zn2+掺杂完全溶解在TiO2中, 并破坏TiO2结晶质量. 在Zn2+的成分占比继续提高至15%的过程中, XPS峰形拟合结果验证了TiO2对Zn2+的溶解度有限, 导致薄膜出现大量孔洞结构, 薄膜的活性比表面积得以提升, 同时Zn2+可以有效地捕获光生e/h+. 为了继续观察Zn2+浓度对TiO2的影响, 将Zn2+的浓度提升至40%, 观察Zn2+与TiO2合金化过程中的现象. 表明化合物ZnTiO3的出现可以充当e/h+的复合中心以及TiO2占比的大幅下降导致合金化之后的薄膜光催化效率逐渐下降.
    A batch of TiO2 films with different Zn2+ compositions are prepared on a single crystal silicon substrate by using sol-gel method to observe the changes in optical and photocatalytic properties in the alloying process of Zn2+ and TiO2. X-ray diffractometer (XRD) is used to observe the changes in the crystal structures of the films in the alloying process and to track the formation of ZnTiO3 compounds. Scanning electron microscope (SEM) and atomic force microscope (AFM) are used to observe the phenomena of a large number of holes on the surfaces of the films due to the limited solubility of the crystal lattice for Zn2+ in the alloying process. X-ray photoelectron spectroscopy (XPS) and optical bandgap are used to observe the changes at a level of the electronic structure of the films in the alloying process of Zn2+ with TiO2. Finally, by degrading the methylene blue solution, it is shown that a small amount of Zn2+ doping is completely dissolved in TiO2, destroying the TiO2 crystalline quality. As the compositional share of Zn2+ continues to increase to 15%, the limited solubility of TiO2 for Zn2+ is verified in the XPS peak fitting, resulting in a large number of hole structures in the film, and the active specific surface area of the film is enhanced, while Zn2+ effectively traps the photogenerated e/h+. In order to continue to observe the effect of Zn2+ concentration on TiO2, we increase the concentration of Zn2+ to 40% and observe the phenomenon in the alloying process of Zn2+ with TiO2. It is shown that the appearance of the compound ZnTiO3 can act as a complex center for e/h+ and a significant decrease in the percentage of TiO2 leads to a gradual decrease in the photocatalytic efficiency of the films after alloying.
      通信作者: 买买提热夏提·买买提, rxtmmt@xju.edu.cn
    • 基金项目: 新疆大学校级大学生创新训练计划(批准号: XJU-SRT-23114)资助的课题.
      Corresponding author: Mamatrishat Mamat, rxtmmt@xju.edu.cn
    • Funds: Project supported by the Students Innovative-Research Training Program of Xinjiang University, China (Grant No. XJU-SRT-23114).
    [1]

    Lukong V T, Ukoba K, Jen T C 2022 Int. J. Adv. Manuf. Technol. 122 3525Google Scholar

    [2]

    李冬冬, 王丽莉 2012 物理学报 61 034212Google Scholar

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212Google Scholar

    [3]

    Chinnarani M, Suresh S, Prabu K M, Kandasamy M, Pugazhenthiran N 2024 Inorg. Chim. Acta 560 121842Google Scholar

    [4]

    Sanattalab E, Gürdağ G, Sığırcı B D 2023 Biomater. Adv. 148 213365Google Scholar

    [5]

    Ziental D, Goslinska B C, Mlynarczyk D T, Sobotta A G, Stanisz B, Goslinski T L 2020 Nanomaterials 10 387Google Scholar

    [6]

    Zhu Z W, Chen S F, Zhang Y, Wang W 2022 Prog. Org. Coat. 173 107226Google Scholar

    [7]

    Alrowaili Z A, Alsohaimi I H, Betiha M A, Essawy A A, Mousa A A, Alruwaili S F, Hassan H M A 2020 Mater. Chem. Phys. 241 122403Google Scholar

    [8]

    Ike P O, Ezugwu S, Chikwenze R, Nwanya A C, Ezugwu A E, Madiba I G, Ezekoye B A, Ahmed M S, Maaza M, Ezema F I 2019 Optik 191 1Google Scholar

    [9]

    Aruna S T, Vismaya A, Balaji N 2021 Mater. Manuf. Processes 36 868Google Scholar

    [10]

    Mittireddi R T, Makani N H, Prajapati D, Raj A, Banerjee R, Panda E 2023 Mater. Charact. 199 112818Google Scholar

    [11]

    Sun N R, Wang J W, Yao J Z, Chen H M, Deng C H 2019 Microchim. Acta 186 159Google Scholar

    [12]

    Zhang Q, Li C Y 2020 Nanomaterials 10 911Google Scholar

    [13]

    Kusior A, Banas J, Zajac A T, Zubrzycka P, Ilnicka A M, Radecka M 2018 J. Mol. Struct. 1157 327Google Scholar

    [14]

    Al-Tayeb M A-A, Khan M Y, Drmosh Q A, Hossain M K, Asim M, Dafalla H, Khan A 2023 Inorg. Chim. Acta 556 121611Google Scholar

    [15]

    Ma Q, Qiu T, Liu S J, Weng L Q, Dong W Y 2010 Appl. Phys. A 104 365Google Scholar

    [16]

    Liu Y, Peng Q, Zhou Z P, Yang G 2018 Chin. Phys. Lett. 35 048101Google Scholar

    [17]

    Resende P D, Maria R, Silva J D, Azevedo I, Santos L A, Tadeu V 2020 J. Mater. Res. Technol. 9 10121Google Scholar

    [18]

    Chen C C, Hu S H, Fu Y P 2015 J. Alloys Compd. 632 326Google Scholar

    [19]

    Ahadi S, Moalej N S, Sheibani S 2019 Solid State Sci. 96 105975Google Scholar

    [20]

    Yoon Y H, Lee S Y, Gwon J, Cho H J, Wu Q, Kim Y H, Lee W H 2018 Ceram. Int. 44 16647Google Scholar

    [21]

    Qu X, Lin J B, Wei Q, Chen C T, Sun D P 2022 Chemosphere 308 136239Google Scholar

    [22]

    Jaimy K B, Safeena V P, Ghosh S, Hebalkar N, Warrier K 2012 Dalton Trans. 41 4824Google Scholar

    [23]

    Chen K T, Hsu C H, Jiang S C, Liang L S, Gao P, Qiu Y, Wu W Y, Zhang S, Zhu W Z, Lien S Y 2022 IEEE Trans. Electron Devices 69 1149Google Scholar

    [24]

    Nair P K, Mizukami F, Nair J, Salou M, Oosawa Y, Izutsu H, Maeda K, Okubo T 1998 Mater. Res. Bull. 33 1495Google Scholar

    [25]

    Chen P C, Chen C C, Chen S H 2017 Curr. Nanosci. 13 373Google Scholar

    [26]

    Ren T Z, Yuan Z Y, Su B L 2004 Colloids Surf., A 241 67Google Scholar

    [27]

    Lang J, Takahashi K, Kubo M, Shimada M 2022 Catalysts 12 365Google Scholar

    [28]

    Mercado C C, Seeley Z M, Bandyopadhyay A, Bose S, McHale J L 2011 ACS Appl. Mater. Interfaces 3 2281Google Scholar

    [29]

    Henderson M 2002 Surf. Sci. Rep. 46 1Google Scholar

    [30]

    Dikici T, Yılmaz O, Akalin A S, Demirci S, Gültekin S, Yıldırım S, Yurddaşkal M 2022 J. Aust. Ceram. Soc. 58 1415Google Scholar

    [31]

    Xu W, Li X J, Zhang S J, Wang J G, Xu Z K 2005 Trans. Nonferrous Met. Soc. China 15 119Google Scholar

    [32]

    Wang C T, Lin H S, Wang W P 2019 Mater. Sci. Semicond. Process. 99 85Google Scholar

    [33]

    Liao C Z, Li Y C, Tjong S C 2020 Nanomaterials 10 124Google Scholar

    [34]

    Ismael M 2020 Sol. Energy 211 522Google Scholar

    [35]

    Matsumoto Y, Katayama M, Abe T, Ohsawa T, Ohkubo I, Kumigashira H, Oshima M, Koinuma H 2010 J. Ceram. Soc. Jpn. 118 993Google Scholar

    [36]

    Ribao P, Rivero M J, Ortiz I 2017 Environ. Sci. Pollut. Res. 24 12628Google Scholar

    [37]

    Tang T, Wang T, Gao Y, Xiao H, Xu J H 2019 J. Mater. Sci. -Mater. Electron. 30 8471Google Scholar

    [38]

    Xavier A M, Jacob I D, Surender S, Saravana kumaar M S S, Elangovan P 2022 Inorg. Chem. Commun. 146 110168Google Scholar

    [39]

    Pecherskaya M D, Butanov K T, Ruzimuradov O N, Mamatkulov S I, Parpiev O 2022 Glass Phys. Chem. 48 327Google Scholar

    [40]

    Heiba Z K, Mohamed M B, Badawi A, Abdellatief M 2022 J. Mater. Sci. -Mater. Electron. 33 10399Google Scholar

    [41]

    Castellón E, Zayat M, Lévy D 2017 Adv. Funct. Mater. 28 04717Google Scholar

    [42]

    Chu J Y, Sun Y C, Han X J, Zhang B, Du Y C, Song B, Xu P 2019 ACS Appl. Mater. Interfaces 11 18475Google Scholar

    [43]

    Maleki K, Abdizadeh H, Golobostanfard M R, Adelfar R 2017 Appl. Surf. Sci. 394 37Google Scholar

  • 图 1  不同Zn2+成分占比的薄膜的 XRD 图样

    Fig. 1.  XRD patterns of thin films with different Zn2+ compositions.

    图 2  不同Zn2+成分占比的薄膜的SEM图样

    Fig. 2.  SEM patterns of thin films with different Zn2+ compositions.

    图 3  (a)纯TiO2以及(b)—(d) 3%, 15%和40% Zn2+成分占比的薄膜的二维和三维AFM图像

    Fig. 3.  2D and 3D AFM images of thin films with (a) pure TiO2 and (b)–(d) 3%, 15% and 40% Zn2+ composition.

    图 4  纯TiO2以及3%, 15% 和 40%Zn2+成分占比的薄膜的XPS光谱

    Fig. 4.  XPS spectra of pure TiO2 and thin films with 3%, 15% and 40% Zn2+ compositions.

    图 5  不同Zn2+成分占比的薄膜的(a)吸收光谱和(b) 光带隙能

    Fig. 5.  (a) Absorption spectra and (b) optical band gap energy of films with different Zn2+ composition.

    图 6  (a) 不同Zn2+成分占比的薄膜的吸收阈值波长和光带隙能; (b) 纯TiO2和Zn2+成分占比为3%, 15% 和 40%的薄膜的价带

    Fig. 6.  (a) Absorption threshold wavelengths and optical band gap energies of films with different Zn2+ compositions; (b) valence bands of pure TiO2 and films with 3%, 15% and 40% Zn2+ compositions.

    图 7  不同Zn2+成分占比的薄膜的能带位置示意图

    Fig. 7.  Schematic representation of the energy band positions of films with different Zn2+ compositions.

    图 8  降解亚甲基蓝的光催化活性 (a) 随时间变化的降解量; (b) 相应的降解反应速率常数图

    Fig. 8.  Photocatalytic activity for degradation of methylene blue: (a) Degradation amount with time; (b) corresponding degradation rate constant plots.

    图 9  光催化反应速率(η)与光催化反应常数(Kapp)的关系图

    Fig. 9.  Plot of photocatalytic reaction rate (η) versus photocatalytic reaction constant (Kapp).

    表 1  从 XRD 图谱获得的结构参数

    Table 1.  Structural parameters obtained from XRD spectra.

    Samples (h k l ) FWHM β/(°) D/nm
    TiO2 (1 0 1) 0.177 8.384
    3% Zn-TiO2 (1 0 1) 0.161 9.217
    5% Zn-TiO2 (1 0 1) 0.197 7.533
    10% Zn-TiO2 (1 0 1) 0.180 8.244
    15% Zn-TiO2 (1 0 1) 0.259 5.730
    20% Zn-TiO2 (1 0 1) 0.152 9.762
    40% Zn-TiO2 (1 0 1) 0.227 6.537
    下载: 导出CSV

    表 2  从AFM获得的粗糙度参数(Ra为算数平均粗糙度, RMS为均方根粗糙度, RSk为粗糙度斜率, RKu为粗糙度峰度)

    Table 2.  Roughness parameters obtained from AFM (Ra, RMS, RSk, RKu are the average, root- mean-square, Skewness, and Kurtosis values of surface roughness, respectively).

    Samples Roughness
    Ra/nm
    Roughness
    RMS/nm
    Skewness
    RSk
    Kurtosis
    RKu
    TiO2 3.515 4.359 –0.492 0.276
    3%Zn-TiO2 2.230 2.851 –0.077 0.089
    15%Zn-TiO2 5.590 6.990 –0.313 0.819
    40%Zn-TiO2 6.115 8.703 –1.079 3.318
    下载: 导出CSV
  • [1]

    Lukong V T, Ukoba K, Jen T C 2022 Int. J. Adv. Manuf. Technol. 122 3525Google Scholar

    [2]

    李冬冬, 王丽莉 2012 物理学报 61 034212Google Scholar

    Li D D, Wang L L 2012 Acta Phys. Sin. 61 034212Google Scholar

    [3]

    Chinnarani M, Suresh S, Prabu K M, Kandasamy M, Pugazhenthiran N 2024 Inorg. Chim. Acta 560 121842Google Scholar

    [4]

    Sanattalab E, Gürdağ G, Sığırcı B D 2023 Biomater. Adv. 148 213365Google Scholar

    [5]

    Ziental D, Goslinska B C, Mlynarczyk D T, Sobotta A G, Stanisz B, Goslinski T L 2020 Nanomaterials 10 387Google Scholar

    [6]

    Zhu Z W, Chen S F, Zhang Y, Wang W 2022 Prog. Org. Coat. 173 107226Google Scholar

    [7]

    Alrowaili Z A, Alsohaimi I H, Betiha M A, Essawy A A, Mousa A A, Alruwaili S F, Hassan H M A 2020 Mater. Chem. Phys. 241 122403Google Scholar

    [8]

    Ike P O, Ezugwu S, Chikwenze R, Nwanya A C, Ezugwu A E, Madiba I G, Ezekoye B A, Ahmed M S, Maaza M, Ezema F I 2019 Optik 191 1Google Scholar

    [9]

    Aruna S T, Vismaya A, Balaji N 2021 Mater. Manuf. Processes 36 868Google Scholar

    [10]

    Mittireddi R T, Makani N H, Prajapati D, Raj A, Banerjee R, Panda E 2023 Mater. Charact. 199 112818Google Scholar

    [11]

    Sun N R, Wang J W, Yao J Z, Chen H M, Deng C H 2019 Microchim. Acta 186 159Google Scholar

    [12]

    Zhang Q, Li C Y 2020 Nanomaterials 10 911Google Scholar

    [13]

    Kusior A, Banas J, Zajac A T, Zubrzycka P, Ilnicka A M, Radecka M 2018 J. Mol. Struct. 1157 327Google Scholar

    [14]

    Al-Tayeb M A-A, Khan M Y, Drmosh Q A, Hossain M K, Asim M, Dafalla H, Khan A 2023 Inorg. Chim. Acta 556 121611Google Scholar

    [15]

    Ma Q, Qiu T, Liu S J, Weng L Q, Dong W Y 2010 Appl. Phys. A 104 365Google Scholar

    [16]

    Liu Y, Peng Q, Zhou Z P, Yang G 2018 Chin. Phys. Lett. 35 048101Google Scholar

    [17]

    Resende P D, Maria R, Silva J D, Azevedo I, Santos L A, Tadeu V 2020 J. Mater. Res. Technol. 9 10121Google Scholar

    [18]

    Chen C C, Hu S H, Fu Y P 2015 J. Alloys Compd. 632 326Google Scholar

    [19]

    Ahadi S, Moalej N S, Sheibani S 2019 Solid State Sci. 96 105975Google Scholar

    [20]

    Yoon Y H, Lee S Y, Gwon J, Cho H J, Wu Q, Kim Y H, Lee W H 2018 Ceram. Int. 44 16647Google Scholar

    [21]

    Qu X, Lin J B, Wei Q, Chen C T, Sun D P 2022 Chemosphere 308 136239Google Scholar

    [22]

    Jaimy K B, Safeena V P, Ghosh S, Hebalkar N, Warrier K 2012 Dalton Trans. 41 4824Google Scholar

    [23]

    Chen K T, Hsu C H, Jiang S C, Liang L S, Gao P, Qiu Y, Wu W Y, Zhang S, Zhu W Z, Lien S Y 2022 IEEE Trans. Electron Devices 69 1149Google Scholar

    [24]

    Nair P K, Mizukami F, Nair J, Salou M, Oosawa Y, Izutsu H, Maeda K, Okubo T 1998 Mater. Res. Bull. 33 1495Google Scholar

    [25]

    Chen P C, Chen C C, Chen S H 2017 Curr. Nanosci. 13 373Google Scholar

    [26]

    Ren T Z, Yuan Z Y, Su B L 2004 Colloids Surf., A 241 67Google Scholar

    [27]

    Lang J, Takahashi K, Kubo M, Shimada M 2022 Catalysts 12 365Google Scholar

    [28]

    Mercado C C, Seeley Z M, Bandyopadhyay A, Bose S, McHale J L 2011 ACS Appl. Mater. Interfaces 3 2281Google Scholar

    [29]

    Henderson M 2002 Surf. Sci. Rep. 46 1Google Scholar

    [30]

    Dikici T, Yılmaz O, Akalin A S, Demirci S, Gültekin S, Yıldırım S, Yurddaşkal M 2022 J. Aust. Ceram. Soc. 58 1415Google Scholar

    [31]

    Xu W, Li X J, Zhang S J, Wang J G, Xu Z K 2005 Trans. Nonferrous Met. Soc. China 15 119Google Scholar

    [32]

    Wang C T, Lin H S, Wang W P 2019 Mater. Sci. Semicond. Process. 99 85Google Scholar

    [33]

    Liao C Z, Li Y C, Tjong S C 2020 Nanomaterials 10 124Google Scholar

    [34]

    Ismael M 2020 Sol. Energy 211 522Google Scholar

    [35]

    Matsumoto Y, Katayama M, Abe T, Ohsawa T, Ohkubo I, Kumigashira H, Oshima M, Koinuma H 2010 J. Ceram. Soc. Jpn. 118 993Google Scholar

    [36]

    Ribao P, Rivero M J, Ortiz I 2017 Environ. Sci. Pollut. Res. 24 12628Google Scholar

    [37]

    Tang T, Wang T, Gao Y, Xiao H, Xu J H 2019 J. Mater. Sci. -Mater. Electron. 30 8471Google Scholar

    [38]

    Xavier A M, Jacob I D, Surender S, Saravana kumaar M S S, Elangovan P 2022 Inorg. Chem. Commun. 146 110168Google Scholar

    [39]

    Pecherskaya M D, Butanov K T, Ruzimuradov O N, Mamatkulov S I, Parpiev O 2022 Glass Phys. Chem. 48 327Google Scholar

    [40]

    Heiba Z K, Mohamed M B, Badawi A, Abdellatief M 2022 J. Mater. Sci. -Mater. Electron. 33 10399Google Scholar

    [41]

    Castellón E, Zayat M, Lévy D 2017 Adv. Funct. Mater. 28 04717Google Scholar

    [42]

    Chu J Y, Sun Y C, Han X J, Zhang B, Du Y C, Song B, Xu P 2019 ACS Appl. Mater. Interfaces 11 18475Google Scholar

    [43]

    Maleki K, Abdizadeh H, Golobostanfard M R, Adelfar R 2017 Appl. Surf. Sci. 394 37Google Scholar

  • [1] 王月, 邵渤淮, 陈双龙, 王春杰, 高春晓. 高压下缺陷对锐钛矿相TiO2多晶电输运性能的影响: 交流阻抗测量. 物理学报, 2023, 72(12): 126401. doi: 10.7498/aps.72.20230020
    [2] 张利胜. 基于金纳米阵列表面等离子体驱动的光催化特性. 物理学报, 2021, 70(23): 235202. doi: 10.7498/aps.70.20210424
    [3] 高旭东, 杨得草, 魏雯静, 李公平. 电子束对ZnO和TiO2辐照损伤的模拟计算. 物理学报, 2021, 70(23): 234101. doi: 10.7498/aps.70.20211223
    [4] 李鹏程, 唐重阳, 程亮, 胡永明, 肖湘衡, 陈万平. TiO2纳米粉在水中通过摩擦还原CO2. 物理学报, 2021, 70(21): 214601. doi: 10.7498/aps.70.20210210
    [5] 崔宗杨, 谢忠帅, 汪尧进, 袁国亮, 刘俊明. 钙钛矿铁电半导体的光催化研究现状及其展望. 物理学报, 2020, 69(12): 127706. doi: 10.7498/aps.69.20200287
    [6] 姚盼盼, 王玲瑞, 王家祥, 郭海中. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [7] 王少霞, 赵旭才, 潘多桥, 庞国旺, 刘晨曦, 史蕾倩, 刘桂安, 雷博程, 黄以能, 张丽丽. 过渡金属(Cr, Mn, Fe, Co)掺杂对TiO2磁性影响的第一性原理研究. 物理学报, 2020, 69(19): 197101. doi: 10.7498/aps.69.20200644
    [8] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [9] 王春杰, 王月, 高春晓. 高压下金红石相TiO2的晶界电学性质. 物理学报, 2019, 68(20): 206401. doi: 10.7498/aps.68.20190630
    [10] 吴化平, 令欢, 张征, 李研彪, 梁利华, 柴国钟. 铁电材料光催化活性的研究进展. 物理学报, 2017, 66(16): 167702. doi: 10.7498/aps.66.167702
    [11] 程成, 王国栋, 程潇羽. 室温下表面极化效应对量子点带隙和吸收峰波长的影响. 物理学报, 2017, 66(13): 137802. doi: 10.7498/aps.66.137802
    [12] 郭昭龙, 赵海新, 赵卫. 纳米ZnO-SiO2自清洁增透薄膜的制备及其性能. 物理学报, 2016, 65(6): 064206. doi: 10.7498/aps.65.064206
    [13] 姜恩海, 朱兴凤, 陈凌孚. Heusler合金Co2MnAl(100)表面电子结构、磁性和自旋极化的第一性原理研究. 物理学报, 2015, 64(14): 147301. doi: 10.7498/aps.64.147301
    [14] 李佩欣, 冯铭扬, 吴彩平, 李少波, 侯磊田, 马嘉赛, 殷春浩. 基于电子顺磁共振的锌卟啉敏化TiO2光催化性机理的研究. 物理学报, 2015, 64(13): 137601. doi: 10.7498/aps.64.137601
    [15] 王涛, 陈建峰, 乐园. I掺杂金红石TiO2(110)面的第一性原理研究. 物理学报, 2014, 63(20): 207302. doi: 10.7498/aps.63.207302
    [16] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质. 物理学报, 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [17] 梁培, 王乐, 熊斯雨, 董前民, 李晓艳. Mo-X(B, C, N, O, F)共掺杂TiO2体系的光催化协同效应研究. 物理学报, 2012, 61(5): 053101. doi: 10.7498/aps.61.053101
    [18] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [19] 卢硕, 张跃, 尚家香. Si2CN4(010)表面特性的第一性原理研究. 物理学报, 2011, 60(2): 027302. doi: 10.7498/aps.60.027302
    [20] 孟庆裕, 陈宝玖, 赵晓霞, 颜 斌, 王晓君, 许 武. Ag+掺杂的立方相Y2O3:Eu纳米晶体粉末发光强度研究. 物理学报, 2006, 55(5): 2623-2627. doi: 10.7498/aps.55.2623
计量
  • 文章访问数:  319
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-07
  • 修回日期:  2024-07-08
  • 上网日期:  2024-08-12
  • 刊出日期:  2024-09-20

/

返回文章
返回