搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国散裂中子源缪子谱仪及其应用展望

李强 李样 吕游 潘子文 鲍煜

引用本文:
Citation:

中国散裂中子源缪子谱仪及其应用展望

李强, 李样, 吕游, 潘子文, 鲍煜
cstr: 32037.14.aps.73.20240926

Muon spectrometers on China Spallation Neutron Source and its application prospects

Li Qiang, Li Yang, Lü You, Pan Zi-Wen, Bao Yu
cstr: 32037.14.aps.73.20240926
PDF
HTML
导出引用
  • 中国散裂中子源二期升级工程包含建设缪子实验终端和一条表面缪子束线, 并规划未来建设负缪子束线和衰变缪子束线. 表面缪子束线预计2029年建成出束, 有望成为我国首个人造缪子源实验平台. 缪子自旋弛豫/旋转/共振谱学和负缪子X射线分析谱学是缪子源平台最重要的应用技术, 分别在材料磁性分析和元素成分无损测量方面具有独特优势, 在磁性、超导、新能源、科技考古等多学科领域取得了大量瞩目成果. 本文围绕中国散裂中子源缪子实验终端及其谱仪建设, 分别介绍了缪子自旋弛豫/旋转/共振谱学和负缪子X射线分析谱学的基本原理、特色优势, 以及基于缪子实验终端的谱仪物理设计和应用展望; 最后展望了该缪子实验终端未来的缪子束线规划和更多样化的应用场景.
    The China Spallation Neutron Source Phase-II Project (CSNS-II) includes the construction of a muon source, namely “Muon station for sciEnce technoLOgy and inDustrY” (MELODY). A muon target station and a surface muon beam line will be completed as scheduled in 2029, making MELODY the first Chinese muon facility. This beam line mainly focuses on the application of muon spin relaxation/rotation/resonance (μSR) spectroscopy. The MELODY also reserves the tunnels for building a negative muon beam line and a decay muon beam line in the future, thereby further expanding the research field to muon-induced X-ray emission (MIXE) elemental analysis and μSR measurements in thick cells, respectively. The two types of material characterization technologies keep their uniqueness in multi-disciplinary researches, and also provide complementary insights for other techniques, such as neutron scattering, nuclear magnetic resonance, and X-ray fluorescence analysis.The μSR spectroscopy is a mature technology for injecting highly spin polarized muon beams into various types of materials. The subsequent precession and relaxation of muon spin in its surrounding atomic environment reflect the static and dynamical properties of the material of interest, which are then measured by detecting the asymmetric emission of positrons from the decay of those muons, with an average lifetime of approximately 2.2 μs. This enables μSR to develop into a powerful quantum magnetic probe for investigating materials related to magnetism, superconductivity, and molecular dynamics. The combination of a positive muon and an electron is known as muonium, which is a unique and sensitive probe in studying semiconductors, new energy materials, free radical chemistry, etc. As the production of muon beams strongly relies on proton accelerator, only five muon facilities in the world are available for μSR experiments. This limits the large-scale application of muon related sciences. Especially, Chinese researchers face fierce competition and can only apply for precious and limited muon beam time from international muon sources to characterize the key properties of their materials.The construction of the MELODY muon facility at CSNS-II aims to provide intense and pulsed muon beams for Chinese and international users to conduct their μSR measurements with high quality data in a low repetition rate operation mode. To achieve this goal, as shown in Fig. 1, the μSR spectrometer is designed with 1) over 3000 detector units to obtain a sufficient counting rate of 80 Million/h to significantly suppress statistical fluctuations in a short measuring time, 2) a high asymmetry of 0.3 to greatly amplify μSR signals so as to further reduce statistical fluctuations, and 3) extendable low temperature devices to cover most μSR applications and also fulfill experiments with extreme condition requirements.The MIXE elemental analysis is a type of particle induced X-ray emission (PIXE) technology. Due to the heavier mass of negative muon, the energy of muonic X-ray is around 207 higher than that of X-ray or electron induced fluorescence X-ray. Thus, the MIXE technology is more sensitive to materials with low atomic numbers, and thick samples can be effectively studied without scratching their surfaces. Due to these advantages, the MIXE has been successfully applied to the elemental analysis of cultural heritages, meteorites, Li-ion batteries, etc. MELODY reserves tunnels for negative muon extractions and transport to a MIXE terminal. The MELODY research team is developing a new detection technology with high energy resolution and high counting capability to shorten the measuring time to an acceptable amount based on the 1-Hz repetition rate of muon pulses.The μSR spectroscopy and MIXE are the two most important application fields of accelerator muon beams. The MELODY muon facility aims to develop and promote these technologies in China by constructing dedicated muon beam lines in CSNS-II and in the future. In this overview, we introduce the principles and advantages of the μSR and MIXE technologies, as well as the physical design and application prospects of the μSR and MIXE spectrometers based on the CSNS-II muon source. Finally, discussions and expectations are made regarding the future upgrade of the CSNS-II muon source’s muon beamline and its broader applications.
      通信作者: 鲍煜, yubao@ihep.ac.cn
    • 基金项目: 中国科学院基础前沿科学研究计划“从0到1”原始创新项目(批准号: ZDBS-LY-SLH009)资助的课题.
      Corresponding author: Bao Yu, yubao@ihep.ac.cn
    • Funds: Project supported by the Basic Frontier Scientific Research Program of the Chinese Academy of Sciences “From 0 to 1” Original Innovation Programm (Grant No. ZDBS-LY-SLH009).
    [1]

    Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar

    [2]

    Conversi M, Pancini E, Piccioni O 1947 Phys. Rev. 71 209Google Scholar

    [3]

    Meyer S L, Anderson E W, Bleser E, Lederman I M, Rosen J L, Rothberg J, Wang I T 1963 Phys. Rev. 132 2693Google Scholar

    [4]

    唐健, 李亮, 袁野 2021 物理 50 239Google Scholar

    Tang J, Li L, Yuan Y 2021 Physics 50 239Google Scholar

    [5]

    Baldini A M, Bao Y, Baracchini E, et al. 2016 Eur. Phys. J. C 76 434Google Scholar

    [6]

    Bellgardt U, Otter G, Eichler R, et al. 1988 Nucl. Phys. B 299 1Google Scholar

    [7]

    Bertl W, Engfer R, Hermes E A, Kurz G, Kozlowski T, Kuth J, Otter G, Rosenbaum F, Ryskulov N M, van der Schaaf A, Wintz P, Zychor I (The SINDRUM II Collaboration) 2006 Eur. Phys. J. C 47 337Google Scholar

    [8]

    Hincks E P, Pontecorvo B 1948 Phys. Rev. 73 257Google Scholar

    [9]

    Aoyama T, Asmussen N, Benayoun M, et al. 2020 Phys. Rep. 887 1Google Scholar

    [10]

    Abe M, Bae S, Beer G, et al. 2019 Prog. Theor. Exp. Phys. 2019 053C02Google Scholar

    [11]

    Bennett G W, Bousquet B, Brown H N, et al. 2009 Phys. Rev. D 80 52008Google Scholar

    [12]

    Bennett G W, Bousquet B, Brown H N, et al. 2006 Phys. Rev. D 73 72003Google Scholar

    [13]

    Abi B, Albahri T, Al-Kilani S, et al. 2021 Phys. Rev. Lett. 126 141801Google Scholar

    [14]

    Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Berlie A, Alberto H, Watanabe I 2022 Nat. Rev. Methods Primers 2 4Google Scholar

    [15]

    Tan C, Ding Z F, Zhang J, Zhu Z H, Bernal O O, Ho P C, Hillier A D, Koda A, Luetkens H, Morris G D, MacLaughlin D E, Shu L 2020 Phys. Rev. B 101 195108Google Scholar

    [16]

    Shu L, MacLaughlin D E, Varma C M, Bernal O O, Ho P C, Fukuda R H, Shen X P, Maple M B 2014 Phys. Rev. Lett. 113 166401Google Scholar

    [17]

    Gheidi S, Akintola K, Akella K S, Côté A M, Dunsiger S R, Broholm C, Fuhrman W T, Saha S R, Paglione J, Sonier J E 2019 Phys. Rev. Lett. 123 197203Google Scholar

    [18]

    Tan C, Ying T P, Ding Z F, Zhang J, MacLaughlin D E, Bernal O O, Ho P C, Huang K, Watanabe I, Li S Y, Shu L 2018 Phys. Rev. B 97 174524Google Scholar

    [19]

    Heffner R H, Sonier J E, MacLaughlin D E, Nieuwenhuys G J, Ehlers G, Mezei F, Cheong S W, Gardner J S, Röder H 2000 Phys. Rev. Lett. 85 3285Google Scholar

    [20]

    Li Y, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J, Tsirlin A A, Gegenwart P, Zhang Q 2016 Phys. Rev. Lett. 117 97201Google Scholar

    [21]

    Khasanov R, Evtushinsky D V, Amato A, et al. 2009 Phys. Rev. Lett. 102 187005Google Scholar

    [22]

    Hillier A D, Quintanilla J, Mazidian B, Annett J F, Cywinski R 2012 Phys Rev Lett 109 97001Google Scholar

    [23]

    殳蕾, 倪晓杰, 潘子文 2021 物理 50 257

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257

    [24]

    Chang W Y 1949 Rev. Mod. Phys. 21 166Google Scholar

    [25]

    Terada K, Ninomiya K, Osawa T, Tachibana S, Miyake Y, Kubo M K, Kawamura N, Higemoto W, Tsuchiyama A, Ebihara M, Uesugi M 2014 Sci. Rep. 4 5072Google Scholar

    [26]

    Terada K, Sato A, Ninomiya K, Kawashima Y, Shimomura K, Yoshida G, Kawai Y, Osawa T, Tachibana S 2017 Sci. Rep. 7 15478Google Scholar

    [27]

    Clemenza M, Bonesini M, Carpinelli M, et al. 2019 J. Radioanal. Nucl. Chem. 322 1357Google Scholar

    [28]

    Hampshire B V, Butcher K, Ishida K, Green G, Paul D M, Hillier A D 2019 Heritage 2 400Google Scholar

    [29]

    Green G A, Ishida K, Hampshire B V, Butcher K, Pollard A M, Hillier A D 2021 J. Archaeol. Sci. 134 105470Google Scholar

    [30]

    Cataldo M, Clemenza M, Ishida K, Hillier A D 2022 Appl. Sci. 12 4237Google Scholar

    [31]

    Umegaki I, Higuchi Y, Kondo Y, Ninomiya K, Takeshita S, Tampo M, Nakano H, Oka H, Sugiyama J, Kubo M K, Miyake Y 2020 Anal. Chem. 92 8194Google Scholar

    [32]

    Breunlich W H, Kammel P, Cohen J S, Leon M 1989 Annu. Rev. Nucl. Part. Sci. 39 311Google Scholar

    [33]

    Morishima K, Kuno M, Nishio A, et al. 2017 Nature 552 386Google Scholar

    [34]

    Shimomura K, Koda A, Pant A D, et al. 2024 Interactions 245 31Google Scholar

    [35]

    Daum M 1982 Nucl. Instrum. Methods Phys. Res. 192 137Google Scholar

    [36]

    Thomason J W G 2019 Nucl. Instrum. Methods Phys. Res. A 917 61Google Scholar

    [37]

    Cook S, D’Arcy R, Edmonds A, et al. 2017 Phys. Rev. Accel. Beams 20 30101Google Scholar

    [38]

    Beveridge J L, Doornbos J, Garner D M 1986 Hyperfine Interact. 32 907Google Scholar

    [39]

    Bao Y, Chen J, Chen C, et al. 2023 J. Phys. Conf. Ser. 2462 12034Google Scholar

    [40]

    Kim J C, Jeong J Y, Pak K, Kim Y H, Park J, Lee J H, Kim Y K 2023 Nucl. Eng. Technol. 55 3692Google Scholar

    [41]

    Cai H J, He Y, Liu S, Jia H, Qin Y, Wang Z, Wang F, Zhao L, Pu N, Niu J, Chen L, Sun Z, Zhao H, Zhan W 2024 Phys. Rev. Accel. Beams 27 23403Google Scholar

    [42]

    Lü M, Wang J, Siang Khaw K 2023 arXiv: 2307.01455 [physics. acc-ph]

    [43]

    唐靖宇, 周路平, 洪杨 2020 物理 49 645Google Scholar

    Tang J Y, Zhou L P, Hong Y 2020 Physics 49 645Google Scholar

    [44]

    Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chinese Physics C 34 121Google Scholar

    [45]

    Chen H, Wang X L 2016 Nat. Mater. 15 689Google Scholar

    [46]

    Fu S N, Chen H S, Chen Y B, Ma L, Wang F W 2018 J. Phys. Conf. Ser. 1021 12002Google Scholar

    [47]

    Gao Z R, Yu H, Chen F J, et al. 2024 Nature 628 99Google Scholar

    [48]

    Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W, Zhang Z, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar

    [49]

    Pan F, Ni K, Xu T, Chen H, Wang Y, Gong K, Liu C, Li X, Lin M L, Li S, Wang X, Yan W, Yin W, Tan P H, Sun L, Yu D, Ruoff R S, Zhu Y 2023 Nature 614 95Google Scholar

    [50]

    Liu L, Vassilopoulos N, Bao Y, Zhang G, Chen C, Tan Z, He N 2023 J. Phys. Conf. Ser. 2462 012020Google Scholar

    [51]

    Liu L, Yu Q, Wang Z, Ell J, Huang M X, Ritchie R O 2020 Science 368 1347Google Scholar

    [52]

    L Michel 1950 Proc. Phys. Soc. A 63 514Google Scholar

    [53]

    Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy (Vol. 1) (Cham: Springer Cham) pp66–131

    Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy (Vol. 1) (Cham: Springer Cham) pp66–131

    [54]

    Staub U, Roessli B, Amato A 2000 Physica B Condens. Matter 289–290 299

    [55]

    Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305Google Scholar

    [56]

    de Visser A, Huy N T, Gasparini A, de Nijs D E, Andreica D, Baines C, Amato A 2009 Phys. Rev. Lett. 102 167003Google Scholar

    [57]

    Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007Google Scholar

    [58]

    Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769Google Scholar

    [59]

    Yokoyama K, Lord J S, Mengyan P W, Goeks M R, Lichti R L 2019 Appl. Phys. Lett. 115 112101Google Scholar

    [60]

    Li Q, Pan Z, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 J. Phys. Conf. Ser. 2462 012022Google Scholar

    [61]

    Fermi E, Teller E 1947 Phys. Rev. 72 399Google Scholar

    [62]

    Mukhopadhyay N C 1977 Phys. Rep. 30 1Google Scholar

    [63]

    Borie E, Rinker G A 1982 Rev. Mod. Phys. 54 67Google Scholar

    [64]

    Nakamura T, Matsumoto M, Amano K, et al. 2023 Science 379 eabn8671Google Scholar

    [65]

    Shimada-Takaura K, Ninomiya K, Sato A, Ueda N, Tampo M, Takeshita S, Umegaki I, Miyake Y, Takahashi K 2021 J. Nat. Med. 75 532Google Scholar

    [66]

    Brown K L, Stockdale C P J, Luo H, Zhao X, Li J F, Viehland D, Xu G, Gehring P M, Ishida K, Hillier A D, Stock C 2018 J. Phys. : Condens. Matter 30 125703Google Scholar

    [67]

    Ninomiya K, Kajino M, Nambu A, Inagaki M, Kudo T, Sato A, Terada K, Shinohara A, Tomono D, Kawashima Y, Sakai Y, Takayama T 2022 Bull. Chem. Soc. Jpn. 95 1769Google Scholar

    [68]

    Aramini M, Milanese C, Hillier A D, Girella A, Horstmann C, Klassen T, Ishida K, Dornheim M, Pistidda C 2020 Nanomaterials 10 1260Google Scholar

    [69]

    Rossini R, Di Martino D, Agoro T, et al. 2023 J. Anal. At. Spectrom. 38 293Google Scholar

    [70]

    Ninomiya K, Nagatomo T, Kubo K M, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T, Higemoto W 2010 J. Phys. Conf. Ser. 225 12040Google Scholar

    [71]

    Hillier A D, Paul D McK, Ishida K 2016 Microchem. J. 125 203Google Scholar

    [72]

    Mizuno R, Niikura M, Saito T Y, et al. 2024 Nucl. Instrum. Methods Phys. Res. A 1060 169029Google Scholar

    [73]

    Terada K, Ninomiya K, Sato A, Tomono D, Kawashima Y, Inagaki M, Nambu A, Kudo T, Osawa T, Kubo M K 2024 J. Anal. Sci. Technol. 15 28Google Scholar

    [74]

    Osawa T, Nagasawa S, Ninomiya K, et al. 2023 ACS Earth Space Chem. 7 699Google Scholar

    [75]

    Gerchow L, Biswas S, Janka G, Vigo C, Knecht A, Vogiatzi S M, Ritjoho N, Prokscha T, Luetkens H, Amato A 2023 Rev. Sci. Instrum. 94 045106Google Scholar

    [76]

    Sugiyama J, Umegaki I, Nozaki H, Higemoto W, Hamada K, Takeshita S, Koda A, Shimomura K, Ninomiya K, Kubo M K 2018 Phys. Rev. Lett. 121 87202Google Scholar

    [77]

    Kato T, Tampo M, Takeshita S, Tanaka H, Matsuyama H, Hashimoto M, Miyake Y 2021 IEEE Trans. Nucl. Sci. 68 1436Google Scholar

    [78]

    Ninomiya K, Kubo M K, Inagaki M, et al. 2024 J. Radioanal. Nucl. Chem. 333 3445Google Scholar

  • 图 1  CSNS-II科学装置总体概览

    Fig. 1.  General overview of the CSNS-II scientific facility.

    图 2  CSNS-II缪子实验终端的束线布局

    Fig. 2.  Layout diagram of the beam lines of the CSNS-II muon experiment terminal.

    图 3  μSR技术基本原理[53]

    Fig. 3.  Schematic diagram of the basic principles of the μSR technology[53].

    图 4  (a) 正电子计数随$ {{\text{μ}}}^{+} $衰变时间变化的原始谱; (b)消除指数衰减项并归一化到$ A $的极化函数谱[53]

    Fig. 4.  (a) Original spectrum of positron counts measured by the detector as a function of $ {{\text{μ}}}^{+} $ decay time; (b) the polarization function removed the exponential decay term and normalized to asymmetry $ A $[53].

    图 5  (a) 缪子自旋极化方向平行于反铁磁样品Li2CuO2测得的μSR谱; (b) 对μSR谱快速傅里叶变换, 3个振荡频率清晰可见[54]

    Fig. 5.  (a) μSR signal (here called “Asymmetry”) measured in the antiferromagnetic state of Li2CuO2 with the initial muon polarization is along the a-axis; (b) in the fast Fourier transform of the μSR signal, three spontaneous frequencies are seen[54].

    图 6  铁基高温超导体多晶样品LaFeAsO的μSR谱, 在145 K和100 K低温下分别表现出顺磁态和反铁磁态[55]

    Fig. 6.  μSR signals recorded in a polycrystalline sample of LaFeAsO in the paramagnetic state (145 K) and in the antiferromagnetic state (100 K)[55].

    图 7  顺磁态磁场分布服从(a)高斯“Kubo-Toyabe”公式和(b)洛伦兹“Kubo-Toyabe”公式的缪子去极化函数[53]

    Fig. 7.  Time evolution of the muon polarization $ P\left(t\right) $ in a system where the magnetic moments are randomly oriented. The field distribution produces the so-called (a) Gaussian and (b) Lorentzian “Kubo-Toyabe” function[53].

    图 8  (a) ZF-μSR揭示了巨磁阻La0.67Ca0.33MnO3中缪子自旋涨落存在快慢两个成分, 即存在两个空间分离区域具有非常不同的Mn离子自旋动力学; (b) μSR实验观察到超导体UCoGe (TSC = 0.8 K) 在T = 3 K以下出现长程磁有序, 与超导电性共存[56]; (c) 非中心对称金属间超导体LaNiC的μSR实验发现了超导性与自发磁性出现的温度一致, 意味着超导状态下时间反演对称性被打破[57]

    Fig. 8.  (a) Two components of fast and slow muon spin fluctuation in La0.67Ca0.33MnO3 were revealed by ZF-μSR, i.e., there are two separated regions with very different Mn spin kinetics; (b) in μSR experiments, it was observed that the superconductor UCoGe (TSC = 0.8 K) exhibited a long-range magnetic order below T = 3 K, which coexisted with superconductivity; (c) the μSR experiments of the non-centrally symmetric intermetallic superconductor LaNiC found that the occurrence of superconductivity coincided well with the appearance of spontaneous magnetism, which means that the time reversal symmetry was broken in its superconducting state[57].

    图 9  不同实验技术可测量的磁性涨落频率范围, $ {\tau }_{{\mathrm{c}}}= $$ 1/{\nu }_{{\mathrm{c}}} $是与磁涨落频率相关的特征涨落时间

    Fig. 9.  Dynamical ranges accessible to different techniques, the $ {\tau }_{{\mathrm{c}}}=1/{\nu }_{{\mathrm{c}}} $ is the characteristic fluctuation time associated with the magnetic fluctuations.

    图 10  MELODY表面缪子束μSR谱仪结构[60]

    Fig. 10.  Structure of the μSR spectrometer on the surface muon line of the MELODY[60].

    图 11  元素周期表中各元素μ-X射线的Kα射线能量

    Fig. 11.  Kα energies of the μ-X-rays for each element in the periodic table.

    图 12  J-PARC利用MIXE技术无损检测“龙宫”小行星样品(红色线)和Orgueil 陨石样品(蓝色线)的$ {\text{μ}} $-X射线谱[64]

    Fig. 12.  The μ-X-ray spectra of the “Long Gong” asteroid sample (red line) and the Orgueil meteorite sample (blue line) were measured on the J-PARC $ {{\text{μ}}}^{-} $ beam line by using the MIXE technology[64].

    图 13  (a) MIXE和XRF技术研究文物药瓶元素成分优势互补, MIXE谱清晰检测到了汞和氯成分的存在, 而XRF谱检测到了铅、硅成分[65]; (b) J-PARC利用MIXE技术测量锂金属在锂离子电池阳极沉积的实验示意图, 他们调节缪子能量对样品进行深度分析, 观察到了锂金属层的存在[31]

    Fig. 13.  (a) MIXE and XRF techniques were used to study the elemental composition of an antiquities vial, and the presence of Hg and Cl elements was detected by the MIXE, while Pb and Si elements were detected by the XRF[65]; (b) J-PARC measured the deposition of Li metal at the anode of Li-ion batteries using the MIXE technique, and they adjusted the muon energy to perform a depth analysis of the sample and observed the presence of a Li metal layer[31].

    图 14  (a) J-PARC, (b) ISIS, (c) PSI和(d) MuSIC负缪子束线上的基于高纯锗探测器阵列的MIXE谱仪[30,73-75]

    Fig. 14.  MIXE spectrometer based on high-purity germanium detector array on the $ {{\text{μ}}}^{-} $ beam line of (a) J-PARC, (b) ISIS, (c) PSI and (d) MuSIC[30,73-75].

    表 1  经人工智能优化算法模拟得到的不同束斑下SMT1和SMT2实验终端的缪子束流强度

    Table 1.  Muon beam intensity of SMT1 and SMT2 under different beam spots simulated by using artificial intelligence optimization algorithm.

    束斑尺寸/mm 10 20 30 50 100
    SMT1终端流强/(μ·s–1) 1.1×105 7.3×105 2×106 8.2×106 1.6×107
    SMT2终端流强/(μ·s–1) 5.9×104 1.7×105 8.4×105 6.5×106 1.8×107
    下载: 导出CSV
  • [1]

    Neddermeyer S H, Anderson C D 1937 Phys. Rev. 51 884Google Scholar

    [2]

    Conversi M, Pancini E, Piccioni O 1947 Phys. Rev. 71 209Google Scholar

    [3]

    Meyer S L, Anderson E W, Bleser E, Lederman I M, Rosen J L, Rothberg J, Wang I T 1963 Phys. Rev. 132 2693Google Scholar

    [4]

    唐健, 李亮, 袁野 2021 物理 50 239Google Scholar

    Tang J, Li L, Yuan Y 2021 Physics 50 239Google Scholar

    [5]

    Baldini A M, Bao Y, Baracchini E, et al. 2016 Eur. Phys. J. C 76 434Google Scholar

    [6]

    Bellgardt U, Otter G, Eichler R, et al. 1988 Nucl. Phys. B 299 1Google Scholar

    [7]

    Bertl W, Engfer R, Hermes E A, Kurz G, Kozlowski T, Kuth J, Otter G, Rosenbaum F, Ryskulov N M, van der Schaaf A, Wintz P, Zychor I (The SINDRUM II Collaboration) 2006 Eur. Phys. J. C 47 337Google Scholar

    [8]

    Hincks E P, Pontecorvo B 1948 Phys. Rev. 73 257Google Scholar

    [9]

    Aoyama T, Asmussen N, Benayoun M, et al. 2020 Phys. Rep. 887 1Google Scholar

    [10]

    Abe M, Bae S, Beer G, et al. 2019 Prog. Theor. Exp. Phys. 2019 053C02Google Scholar

    [11]

    Bennett G W, Bousquet B, Brown H N, et al. 2009 Phys. Rev. D 80 52008Google Scholar

    [12]

    Bennett G W, Bousquet B, Brown H N, et al. 2006 Phys. Rev. D 73 72003Google Scholar

    [13]

    Abi B, Albahri T, Al-Kilani S, et al. 2021 Phys. Rev. Lett. 126 141801Google Scholar

    [14]

    Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Berlie A, Alberto H, Watanabe I 2022 Nat. Rev. Methods Primers 2 4Google Scholar

    [15]

    Tan C, Ding Z F, Zhang J, Zhu Z H, Bernal O O, Ho P C, Hillier A D, Koda A, Luetkens H, Morris G D, MacLaughlin D E, Shu L 2020 Phys. Rev. B 101 195108Google Scholar

    [16]

    Shu L, MacLaughlin D E, Varma C M, Bernal O O, Ho P C, Fukuda R H, Shen X P, Maple M B 2014 Phys. Rev. Lett. 113 166401Google Scholar

    [17]

    Gheidi S, Akintola K, Akella K S, Côté A M, Dunsiger S R, Broholm C, Fuhrman W T, Saha S R, Paglione J, Sonier J E 2019 Phys. Rev. Lett. 123 197203Google Scholar

    [18]

    Tan C, Ying T P, Ding Z F, Zhang J, MacLaughlin D E, Bernal O O, Ho P C, Huang K, Watanabe I, Li S Y, Shu L 2018 Phys. Rev. B 97 174524Google Scholar

    [19]

    Heffner R H, Sonier J E, MacLaughlin D E, Nieuwenhuys G J, Ehlers G, Mezei F, Cheong S W, Gardner J S, Röder H 2000 Phys. Rev. Lett. 85 3285Google Scholar

    [20]

    Li Y, Adroja D, Biswas P K, Baker P J, Zhang Q, Liu J, Tsirlin A A, Gegenwart P, Zhang Q 2016 Phys. Rev. Lett. 117 97201Google Scholar

    [21]

    Khasanov R, Evtushinsky D V, Amato A, et al. 2009 Phys. Rev. Lett. 102 187005Google Scholar

    [22]

    Hillier A D, Quintanilla J, Mazidian B, Annett J F, Cywinski R 2012 Phys Rev Lett 109 97001Google Scholar

    [23]

    殳蕾, 倪晓杰, 潘子文 2021 物理 50 257

    Shu L, Ni X J, Pan Z W 2021 Physics 50 257

    [24]

    Chang W Y 1949 Rev. Mod. Phys. 21 166Google Scholar

    [25]

    Terada K, Ninomiya K, Osawa T, Tachibana S, Miyake Y, Kubo M K, Kawamura N, Higemoto W, Tsuchiyama A, Ebihara M, Uesugi M 2014 Sci. Rep. 4 5072Google Scholar

    [26]

    Terada K, Sato A, Ninomiya K, Kawashima Y, Shimomura K, Yoshida G, Kawai Y, Osawa T, Tachibana S 2017 Sci. Rep. 7 15478Google Scholar

    [27]

    Clemenza M, Bonesini M, Carpinelli M, et al. 2019 J. Radioanal. Nucl. Chem. 322 1357Google Scholar

    [28]

    Hampshire B V, Butcher K, Ishida K, Green G, Paul D M, Hillier A D 2019 Heritage 2 400Google Scholar

    [29]

    Green G A, Ishida K, Hampshire B V, Butcher K, Pollard A M, Hillier A D 2021 J. Archaeol. Sci. 134 105470Google Scholar

    [30]

    Cataldo M, Clemenza M, Ishida K, Hillier A D 2022 Appl. Sci. 12 4237Google Scholar

    [31]

    Umegaki I, Higuchi Y, Kondo Y, Ninomiya K, Takeshita S, Tampo M, Nakano H, Oka H, Sugiyama J, Kubo M K, Miyake Y 2020 Anal. Chem. 92 8194Google Scholar

    [32]

    Breunlich W H, Kammel P, Cohen J S, Leon M 1989 Annu. Rev. Nucl. Part. Sci. 39 311Google Scholar

    [33]

    Morishima K, Kuno M, Nishio A, et al. 2017 Nature 552 386Google Scholar

    [34]

    Shimomura K, Koda A, Pant A D, et al. 2024 Interactions 245 31Google Scholar

    [35]

    Daum M 1982 Nucl. Instrum. Methods Phys. Res. 192 137Google Scholar

    [36]

    Thomason J W G 2019 Nucl. Instrum. Methods Phys. Res. A 917 61Google Scholar

    [37]

    Cook S, D’Arcy R, Edmonds A, et al. 2017 Phys. Rev. Accel. Beams 20 30101Google Scholar

    [38]

    Beveridge J L, Doornbos J, Garner D M 1986 Hyperfine Interact. 32 907Google Scholar

    [39]

    Bao Y, Chen J, Chen C, et al. 2023 J. Phys. Conf. Ser. 2462 12034Google Scholar

    [40]

    Kim J C, Jeong J Y, Pak K, Kim Y H, Park J, Lee J H, Kim Y K 2023 Nucl. Eng. Technol. 55 3692Google Scholar

    [41]

    Cai H J, He Y, Liu S, Jia H, Qin Y, Wang Z, Wang F, Zhao L, Pu N, Niu J, Chen L, Sun Z, Zhao H, Zhan W 2024 Phys. Rev. Accel. Beams 27 23403Google Scholar

    [42]

    Lü M, Wang J, Siang Khaw K 2023 arXiv: 2307.01455 [physics. acc-ph]

    [43]

    唐靖宇, 周路平, 洪杨 2020 物理 49 645Google Scholar

    Tang J Y, Zhou L P, Hong Y 2020 Physics 49 645Google Scholar

    [44]

    Tang J Y, Fu S N, Jing H T, Tang H Q, Wei J, Xia H H 2010 Chinese Physics C 34 121Google Scholar

    [45]

    Chen H, Wang X L 2016 Nat. Mater. 15 689Google Scholar

    [46]

    Fu S N, Chen H S, Chen Y B, Ma L, Wang F W 2018 J. Phys. Conf. Ser. 1021 12002Google Scholar

    [47]

    Gao Z R, Yu H, Chen F J, et al. 2024 Nature 628 99Google Scholar

    [48]

    Ren Q, Qi J, Yu D, Zhang Z, Song R, Song W, Yuan B, Wang T, Ren W, Zhang Z, Tong X, Li B 2022 Nat. Commun. 13 2293Google Scholar

    [49]

    Pan F, Ni K, Xu T, Chen H, Wang Y, Gong K, Liu C, Li X, Lin M L, Li S, Wang X, Yan W, Yin W, Tan P H, Sun L, Yu D, Ruoff R S, Zhu Y 2023 Nature 614 95Google Scholar

    [50]

    Liu L, Vassilopoulos N, Bao Y, Zhang G, Chen C, Tan Z, He N 2023 J. Phys. Conf. Ser. 2462 012020Google Scholar

    [51]

    Liu L, Yu Q, Wang Z, Ell J, Huang M X, Ritchie R O 2020 Science 368 1347Google Scholar

    [52]

    L Michel 1950 Proc. Phys. Soc. A 63 514Google Scholar

    [53]

    Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy (Vol. 1) (Cham: Springer Cham) pp66–131

    Amato A, Morenzoni E 2024 Introduction to Muon Spin Spectroscopy (Vol. 1) (Cham: Springer Cham) pp66–131

    [54]

    Staub U, Roessli B, Amato A 2000 Physica B Condens. Matter 289–290 299

    [55]

    Luetkens H, Klauss H H, Kraken M, et al. 2009 Nat. Mater. 8 305Google Scholar

    [56]

    de Visser A, Huy N T, Gasparini A, de Nijs D E, Andreica D, Baines C, Amato A 2009 Phys. Rev. Lett. 102 167003Google Scholar

    [57]

    Hillier A D, Quintanilla J, Cywinski R 2009 Phys. Rev. Lett. 102 117007Google Scholar

    [58]

    Sonier J E, Brewer J H, Kiefl R F 2000 Rev. Mod. Phys. 72 769Google Scholar

    [59]

    Yokoyama K, Lord J S, Mengyan P W, Goeks M R, Lichti R L 2019 Appl. Phys. Lett. 115 112101Google Scholar

    [60]

    Li Q, Pan Z, Bao Y, Yang T, Cheng H, Li Y, Hu H, Liang H, Ye B 2023 J. Phys. Conf. Ser. 2462 012022Google Scholar

    [61]

    Fermi E, Teller E 1947 Phys. Rev. 72 399Google Scholar

    [62]

    Mukhopadhyay N C 1977 Phys. Rep. 30 1Google Scholar

    [63]

    Borie E, Rinker G A 1982 Rev. Mod. Phys. 54 67Google Scholar

    [64]

    Nakamura T, Matsumoto M, Amano K, et al. 2023 Science 379 eabn8671Google Scholar

    [65]

    Shimada-Takaura K, Ninomiya K, Sato A, Ueda N, Tampo M, Takeshita S, Umegaki I, Miyake Y, Takahashi K 2021 J. Nat. Med. 75 532Google Scholar

    [66]

    Brown K L, Stockdale C P J, Luo H, Zhao X, Li J F, Viehland D, Xu G, Gehring P M, Ishida K, Hillier A D, Stock C 2018 J. Phys. : Condens. Matter 30 125703Google Scholar

    [67]

    Ninomiya K, Kajino M, Nambu A, Inagaki M, Kudo T, Sato A, Terada K, Shinohara A, Tomono D, Kawashima Y, Sakai Y, Takayama T 2022 Bull. Chem. Soc. Jpn. 95 1769Google Scholar

    [68]

    Aramini M, Milanese C, Hillier A D, Girella A, Horstmann C, Klassen T, Ishida K, Dornheim M, Pistidda C 2020 Nanomaterials 10 1260Google Scholar

    [69]

    Rossini R, Di Martino D, Agoro T, et al. 2023 J. Anal. At. Spectrom. 38 293Google Scholar

    [70]

    Ninomiya K, Nagatomo T, Kubo K M, Strasser P, Kawamura N, Shimomura K, Miyake Y, Saito T, Higemoto W 2010 J. Phys. Conf. Ser. 225 12040Google Scholar

    [71]

    Hillier A D, Paul D McK, Ishida K 2016 Microchem. J. 125 203Google Scholar

    [72]

    Mizuno R, Niikura M, Saito T Y, et al. 2024 Nucl. Instrum. Methods Phys. Res. A 1060 169029Google Scholar

    [73]

    Terada K, Ninomiya K, Sato A, Tomono D, Kawashima Y, Inagaki M, Nambu A, Kudo T, Osawa T, Kubo M K 2024 J. Anal. Sci. Technol. 15 28Google Scholar

    [74]

    Osawa T, Nagasawa S, Ninomiya K, et al. 2023 ACS Earth Space Chem. 7 699Google Scholar

    [75]

    Gerchow L, Biswas S, Janka G, Vigo C, Knecht A, Vogiatzi S M, Ritjoho N, Prokscha T, Luetkens H, Amato A 2023 Rev. Sci. Instrum. 94 045106Google Scholar

    [76]

    Sugiyama J, Umegaki I, Nozaki H, Higemoto W, Hamada K, Takeshita S, Koda A, Shimomura K, Ninomiya K, Kubo M K 2018 Phys. Rev. Lett. 121 87202Google Scholar

    [77]

    Kato T, Tampo M, Takeshita S, Tanaka H, Matsuyama H, Hashimoto M, Miyake Y 2021 IEEE Trans. Nucl. Sci. 68 1436Google Scholar

    [78]

    Ninomiya K, Kubo M K, Inagaki M, et al. 2024 J. Radioanal. Nucl. Chem. 333 3445Google Scholar

  • [1] 曹嵩, 殷雯, 周斌, 胡志良, 沈飞, 易天成, 王松林, 梁天骄. 中国散裂中子源二期靶站关键部件辐照损伤模拟计算. 物理学报, 2024, 73(9): 092501. doi: 10.7498/aps.73.20240088
    [2] 王颖, 殳蕾. μSR实验进展与缪子源发展趋势. 物理学报, 2024, 73(19): 197601. doi: 10.7498/aps.73.20240940
    [3] 李雨芃, 汤秀章, 陈欣南, 高春宇, 陈雁南, 范澄军, 吕建友. 基于缪子离散能量的材料鉴别实验研究. 物理学报, 2023, 72(2): 029501. doi: 10.7498/aps.72.20221645
    [4] 苏宁, 刘圆圆, 王力, 程建平. 秦始皇陵地宫宇宙射线缪子吸收成像模拟研究. 物理学报, 2022, 71(6): 064201. doi: 10.7498/aps.71.20211582
    [5] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [6] 王德鑫, 张苏雅拉吐, 蒋伟, 任杰, 王金成, 唐靖宇, 阮锡超, 王宏伟, 陈志强, 黄美容, 唐鑫, 胡新荣, 李鑫祥, 刘龙祥, 刘丙岩, 孙慧, 张岳, 郝子锐, 宋娜, 李雪, 牛丹丹, 利国, 蒙古夫. 不同厚度镥样品中子俘获反应实验研究. 物理学报, 2022, 71(7): 072901. doi: 10.7498/aps.71.20212051
    [7] 张江林, 姜炳, 陈永浩, 郭子安, 王小鹤, 蒋伟, 易晗, 韩建龙, 胡继峰, 唐靖宇, 陈金根, 蔡翔舟. 基于中国散裂中子源反角白光中子束线的天然锂中子全截面测量. 物理学报, 2022, 71(5): 052901. doi: 10.7498/aps.71.20211646
    [8] 严江余, 张全虎, 霍勇刚. 基于散射和次级诱发中子的缪子多模态成像. 物理学报, 2021, 70(19): 191401. doi: 10.7498/aps.70.20210804
    [9] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [10] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, 2021, 70(22): 222801. doi: 10.7498/aps.70.20210742
    [11] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [12] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [13] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 更正:中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(10): 109901. doi: 10.7498/aps.68.109901
    [14] 詹霞, JoeKelleher, 高建波, 马艳玲, 初铭强, 张书彦, 张鹏, SanjooramPaddea, 贡志锋, 侯晓东. 英国散裂中子源工程材料原位加载衍射实验高温样品环境优化设计. 物理学报, 2019, 68(13): 132901. doi: 10.7498/aps.68.20182295
    [15] 胡志良, 杨卫涛, 李永宏, 李洋, 贺朝会, 王松林, 周斌, 于全芝, 何欢, 谢飞, 白雨蓉, 梁天骄. 应用中国散裂中子源9号束线端研究65 nm微控制器大气中子单粒子效应. 物理学报, 2019, 68(23): 238502. doi: 10.7498/aps.68.20191196
    [16] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 中国散裂中子源在大气中子单粒子效应研究中的应用评估. 物理学报, 2019, 68(5): 052901. doi: 10.7498/aps.68.20181843
    [17] 鲍杰, 陈永浩, 张显鹏, 栾广源, 任杰, 王琦, 阮锡超, 张凯, 安琪, 白怀勇, 曹平, 陈琪萍, 程品晶, 崔增琪, 樊瑞睿, 封常青, 顾旻皓, 郭凤琴, 韩长材, 韩子杰, 贺国珠, 何泳成, 何越峰, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱路, 吉旭阳, 江浩雨, 蒋伟, 敬罕涛, 康玲, 康明涛, 兰长林, 李波, 李论, 李强, 李晓, 李阳, 李样, 刘荣, 刘树彬, 刘星言, 马应林, 宁常军, 聂阳波, 齐斌斌, 宋朝晖, 孙虹, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 王鹏程, 王涛峰, 王艳凤, 王朝辉, 王征, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 杨毅, 易晗, 于莉, 余滔, 于永积, 张国辉, 张旌, 张林浩, 张利英, 张清民, 张奇伟, 张玉亮, 张志永, 赵映潭, 周良, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子束流参数的初步测量. 物理学报, 2019, 68(8): 080101. doi: 10.7498/aps.68.20182191
    [18] 温志文, 祁辉荣, 张余炼, 王海云, 刘凌, 王艳凤, 张建, 李玉红, 孙志嘉. 用于中国散裂中子源多功能反射谱仪的高气压多丝正比室探测器的研制. 物理学报, 2018, 67(7): 072901. doi: 10.7498/aps.67.20172618
    [19] 沈飞, 梁泰然, 殷雯, 于全芝, 左太森, 姚泽恩, 朱涛, 梁天骄. 中国散裂中子源多功能反射谱仪屏蔽设计. 物理学报, 2014, 63(15): 152801. doi: 10.7498/aps.63.152801
    [20] 于全芝, 殷雯, 梁天骄. 中国散裂中子源靶站重要部件的辐照损伤计算与分析. 物理学报, 2011, 60(5): 052501. doi: 10.7498/aps.60.052501
计量
  • 文章访问数:  1981
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-05
  • 修回日期:  2024-09-06
  • 上网日期:  2024-09-07
  • 刊出日期:  2024-10-05

/

返回文章
返回