搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于超表面的太赫兹与中长波红外高效分光器件

张鸿伟 蔡仁昊 李吉宁 钟凯 王与烨 徐德刚 姚建铨

引用本文:
Citation:

基于超表面的太赫兹与中长波红外高效分光器件

张鸿伟, 蔡仁昊, 李吉宁, 钟凯, 王与烨, 徐德刚, 姚建铨

Metasurfaces based terahertz and mid- and long-wave infrared high-efficiency beam splitting devices

Zhang Hong-Wei, Cai Ren-Hao, Li Ji-Ning, Zhong Kai, Wang Yu-Ye, Xu De-Gang, Yao Jian-Quan
PDF
HTML
导出引用
  • 多模复合成像技术结合了不同传感器的优势, 具有图像质量高、信息获取能力强、目标检测和识别能力高、对复杂环境的强适应能力、系统的稳定性和鲁棒性高等优点. 其中, 太赫兹和红外复合成像技术结合了太赫兹波段和红外波段的特点, 具有宽频谱覆盖、高分辨率、穿透性强的优点, 有广阔的应用前景. 作为共口径复合成像系统的关键器件之一的太赫兹和红外波段的高效分光器目前仍然缺少, 性能亟待提升. 本文提出了一种结构简单、性能高效的双层金属加介质基底结构二向色超表面. 作为分光器件使用, 当入射角度为45°时, 其在中心频率1.1 THz附近实现大于97%的透射系数, 在中波红外3—5 μm和长波红外8—14 μm波长范围均实现大于98%的反射系数. 该设计对层间结构错位、结构倒圆角、小倍率缩放等结构失配和加工误差都具有很好的鲁棒性, 并且具有偏振不敏感特性. 而当入射角度在0°—60°内变化时, 器件依然保持优异的分光特性. 基于巴比涅定理和等效电路模型, 对该超表面的电磁响应特性进行理论分析, 分析结果与模拟仿真结果相吻合. 该研究结果证明了超表面作为分光器件应用于太赫兹与红外波段的多波长复合成像系统中的可行性, 并为未来新型复合成像探测技术的研究提供了支撑.
    The multi-mode composite imaging technology integrates the advantages of different sensors, and thus has the advantages of high image quality, strong information acquisition capability, high target detection and recognition ability, strong adaptability to complex environments, and high stability and robustness of the system. Among them, the terahertz and infrared composite imaging technology combines the characteristics of terahertz band and infrared band, has the advantages of wide spectrum coverage, high resolution and strong penetration, and has broad application prospects. As one of the key components of the common aperture composite imaging system, the efficient optical splitters in terahertz and infrared band are still lacking at present, and their performance needs to be improved urgently. In this paper, a kind of dichroic metasurface with a simple structure and high performance is proposed by combining simulation experiment and theoretical explanation. When used as a spectroscopic device at an incident angle of 45°, it achieves a transmission coefficient greater than 97% near the center frequency of 1.1 THz, and a reflection coefficient greater than 98% in a wavelength range of 3–5 μm for medium-wave infrared and 8–14 μm for long-wave infrared. The design has good robustness to structural mismatches and machining errors such as structural misalignment, structural fillet, small magnification scaling, and polarization insensitivity. When the incident angle changes in a range of 0–60°, the device still maintains excellent spectral characteristics. In this paper, based on Babinet theorem and equivalent circuit model, the electromagnetic response characteristics of the metasurface are analyzed theoretically, and the analysis results are in agreement with the simulation results. The results of this study prove the feasibility of metasurface as a spectral device in the multiwavelength composite imaging system of terahertz and infrared bands, and provide support for future studying new composite imaging detection technology. In addition, the metasurface structure described in this paper has broad application prospects in many fields such as multi-band infrared stealth, laser and pump light separation in lasers, and provides a valuable reference for designing terahertz and infrared spectroscopy in various scenarios. In the following figure, for S wave and P wave at an incident angle of 45°, panel (a) shows the reflection coefficients varying with the wavelength of metasurface and panel (b) displays terahertz transmission coefficient changing with frequency.
      通信作者: 李吉宁, jiningli@tju.edu.cn
      Corresponding author: Li Ji-Ning, jiningli@tju.edu.cn
    [1]

    Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, Tzortzakis S 2020 Nat. Commun. 11 292Google Scholar

    [2]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [3]

    Liu Z M, Gao E D, Zhang X, Li H J, Xu H, Zhang Z B, Luo X, Zhou F Q 2020 New J. Phys. 22 053039Google Scholar

    [4]

    Fan F, Zhang X Z, Li S S, Deng D C, Wang N, Zhang H, Chang S J 2015 Opt. Express 23 27204Google Scholar

    [5]

    Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar

    [6]

    Wade C G, Šibalić N, Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [7]

    Cheng Y Y, Qiao L B, Zhu D, Wang Y X, Zhao Z 2021 Opt. Lett. 46 1233Google Scholar

    [8]

    Singh R J, Cao W, Ibraheem A N, Cong L Q, Withawat W, Zhang W L 2014 Appl. Phys. Lett. 105 171101Google Scholar

    [9]

    Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. Terahertz Sci. Technol. 1 169Google Scholar

    [10]

    Yang Y H, Mandehgar M, Grischkowsky D 2014 Opt. Express 22 4388Google Scholar

    [11]

    耿兴宁, 徐德刚, 李吉宁, 陈锴, 钟凯, 姚建铨 2020 强激光与粒子束 32 78Google Scholar

    Geng X N, Xu D G, Li J N, Chen K, Zhong K, Yao J Q 2020 High Power Las. Part. Beams 32 78Google Scholar

    [12]

    陈锴, 耿兴宁, 李吉宁, 钟凯, 徐德刚, 蒋山亚, 张景川, 姚建铨 2020 航天器环境工程 37 421Google Scholar

    Chen K, Geng X N, Li J N, Zhong K, Xu D G, Jiang S Y, Zhang J C, Yao J Q 2020 Spacecraft Environ. Eng. 37 421Google Scholar

    [13]

    刘闯 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu C 2016 Ph. D. Dissertation(Harbin: Harbin Institute of Technology

    [14]

    Chen H T, Zhou J F, Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar

    [15]

    姚尧, 沈悦, 郝加明, 戴宁 2019 物理学报 68 147802Google Scholar

    Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar

    [16]

    Sun K, Li J N, Sun J Y, Ge L, Xu D G, Zhong K, Yao J Q 2022 Results Phys. 33 105183Google Scholar

    [17]

    Olmon L R, Slovick B, Johnson W T, Shelton D, Oh S H, Boreman G D, Raschke M B 2012 Phys. Rev. B 86 235147Google Scholar

    [18]

    郁道银, 谈恒英 2015 工程光学(第4版) (北京: 机械工业出版社) 第318页

    Yu D Y, Tan H Y 2015 Engineering Optics (Vol. 4) (Beijing: China Machine Press) p318

    [19]

    本A明克 著 (侯新宇 译) 2009 频率选择表面理论与设计(北京: 科学出版社) 第110—113页

    Munk B A (translated by Hou X Y) 2009 Frequency Selective Surfaces Theory and Design (Beijing: Science Press) pp4–8

    [20]

    张肃文 2009 高频电子线路 (第5版) (北京: 高等教育出版社) 第17—19页

    Zhang S W 2009 High-Frenquency Electronic Circuit (Vol. 5) (Beijing: Higher Education Press) pp17–19

  • 图 1  超表面单元结构示意图

    Fig. 1.  Structure diagram of metasurface unit.

    图 2  在45°入射的超表面透反射系数曲线 (a) 红外反射系数; (b) 太赫兹透射系数

    Fig. 2.  Transmission and reflection coefficient of this metasurface at 45° incident angle: (a) Infrared reflection coefficient; (b) terahertz transmission coefficient.

    图 3  不同入射角度的红外反射系数(a)和太赫兹透射系数曲线(b)

    Fig. 3.  Infrared reflection coefficient (a) and terahertz transmission coefficient (b) at different incidence angles.

    图 4  在45°入射的超表面透反射系数曲线 (a)—(c) 金属结构倒圆角; (d)—(f) 金属结构层间错位

    Fig. 4.  Transmission and reflection coefficient of this metasurface at 45° incident angle: (a)–(c) Metal structure chamfer; (d)–(f) dislocation between layers of metal structures.

    图 5  在45°入射的超表面透反射系数曲线 (a), (b) 结构横向缩放; (c), (d) 金属方块边长变化; (e), (f) 介质基底变化

    Fig. 5.  Transmission and reflection coefficient of this metasurface at 45° incident angle: (a), (b) Horizontal scaling of structure; (c), (d) metal square side length changes; (e), (f) dielectric basement change.

    图 6  巴比涅定理互补结构示意图 (a) 单层金属网栅; (b) 单层金属方块阵列

    Fig. 6.  Diagram of complementary structure of Babinet’s theorem: (a) Single layer metal grid; (b) single layer metal cube array.

    图 7  超表面太赫兹透射系数 (a) 单层超表面; (b) 双层超表面

    Fig. 7.  Terahertz transmission coefficient of metasurface: (a) Single layer metasurface; (b) double layer metasurface.

    图 8  等效电路模型示意图 (a) 金属块; (b) 超表面金属方块

    Fig. 8.  Equivalent circuit model diagram: (a) Metal block; (b) metasurface metal cube.

    图 9  正入射的单层超表面红外反射系数随金属长度变化曲线

    Fig. 9.  Reflection coefficient of this single layer metasurface at normal incident angle varies with the length of metal.

    图 10  在45°入射的单层超表面反射曲线

    Fig. 10.  Reflection coefficient of single layer metasurface at 45° incident angle.

  • [1]

    Koulouklidis A D, Gollner C, Shumakova V, Fedorov V Y, Pugžlys A, Baltuška A, Tzortzakis S 2020 Nat. Commun. 11 292Google Scholar

    [2]

    Burford N M, El-Shenawee M O 2017 Opt. Eng. 56 010901Google Scholar

    [3]

    Liu Z M, Gao E D, Zhang X, Li H J, Xu H, Zhang Z B, Luo X, Zhou F Q 2020 New J. Phys. 22 053039Google Scholar

    [4]

    Fan F, Zhang X Z, Li S S, Deng D C, Wang N, Zhang H, Chang S J 2015 Opt. Express 23 27204Google Scholar

    [5]

    Shalaby M, Peccianti M, Ozturk Y, Morandotti R 2013 Nat. Commun. 4 1558Google Scholar

    [6]

    Wade C G, Šibalić N, Melo N R, Kondo J M, Adams C S, Weatherill K J 2017 Nat. Photonics 11 40Google Scholar

    [7]

    Cheng Y Y, Qiao L B, Zhu D, Wang Y X, Zhao Z 2021 Opt. Lett. 46 1233Google Scholar

    [8]

    Singh R J, Cao W, Ibraheem A N, Cong L Q, Withawat W, Zhang W L 2014 Appl. Phys. Lett. 105 171101Google Scholar

    [9]

    Cooper K B, Dengler R J, Llombart N, Thomas B, Chattopadhyay G, Siegel P H 2011 IEEE Trans. Terahertz Sci. Technol. 1 169Google Scholar

    [10]

    Yang Y H, Mandehgar M, Grischkowsky D 2014 Opt. Express 22 4388Google Scholar

    [11]

    耿兴宁, 徐德刚, 李吉宁, 陈锴, 钟凯, 姚建铨 2020 强激光与粒子束 32 78Google Scholar

    Geng X N, Xu D G, Li J N, Chen K, Zhong K, Yao J Q 2020 High Power Las. Part. Beams 32 78Google Scholar

    [12]

    陈锴, 耿兴宁, 李吉宁, 钟凯, 徐德刚, 蒋山亚, 张景川, 姚建铨 2020 航天器环境工程 37 421Google Scholar

    Chen K, Geng X N, Li J N, Zhong K, Xu D G, Jiang S Y, Zhang J C, Yao J Q 2020 Spacecraft Environ. Eng. 37 421Google Scholar

    [13]

    刘闯 2016 博士学位论文 (哈尔滨: 哈尔滨工业大学)

    Liu C 2016 Ph. D. Dissertation(Harbin: Harbin Institute of Technology

    [14]

    Chen H T, Zhou J F, Hara J F, Chen F, Azad A K, Taylor A J 2010 Phys. Rev. Lett. 105 073901Google Scholar

    [15]

    姚尧, 沈悦, 郝加明, 戴宁 2019 物理学报 68 147802Google Scholar

    Yao Y, Shen Y, Hao J M, Dai N 2019 Acta Phys. Sin. 68 147802Google Scholar

    [16]

    Sun K, Li J N, Sun J Y, Ge L, Xu D G, Zhong K, Yao J Q 2022 Results Phys. 33 105183Google Scholar

    [17]

    Olmon L R, Slovick B, Johnson W T, Shelton D, Oh S H, Boreman G D, Raschke M B 2012 Phys. Rev. B 86 235147Google Scholar

    [18]

    郁道银, 谈恒英 2015 工程光学(第4版) (北京: 机械工业出版社) 第318页

    Yu D Y, Tan H Y 2015 Engineering Optics (Vol. 4) (Beijing: China Machine Press) p318

    [19]

    本A明克 著 (侯新宇 译) 2009 频率选择表面理论与设计(北京: 科学出版社) 第110—113页

    Munk B A (translated by Hou X Y) 2009 Frequency Selective Surfaces Theory and Design (Beijing: Science Press) pp4–8

    [20]

    张肃文 2009 高频电子线路 (第5版) (北京: 高等教育出版社) 第17—19页

    Zhang S W 2009 High-Frenquency Electronic Circuit (Vol. 5) (Beijing: Higher Education Press) pp17–19

  • [1] 王玥, 王豪杰, 崔子健, 张达篪. 双谐振环金属超表面中的连续域束缚态. 物理学报, 2024, 73(5): 057801. doi: 10.7498/aps.73.20231556
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 夏兆生, 刘宇行, 包正, 王丽华, 吴博, 王刚, 王辉, 任信钢, 黄志祥. 基于准连续域束缚态的强圆二色性超表面. 物理学报, 2024, 73(17): 178102. doi: 10.7498/aps.73.20240834
    [4] 白宇, 张振方, 杨海滨, 蔡力, 郁殿龙. 基于非对称吸声器的发动机声学超表面声衬. 物理学报, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [5] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [6] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [7] 孙胜, 阳棂均, 沙威. 基于反射超表面的偏馈式涡旋波产生装置. 物理学报, 2021, 70(19): 198401. doi: 10.7498/aps.70.20210681
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] 徐婷, 王子帅, 李炫华, 沙威. 基于等效电路模型的钙钛矿太阳电池效率损失机理分析. 物理学报, 2021, 70(9): 098801. doi: 10.7498/aps.70.20201975
    [10] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [11] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [12] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测. 物理学报, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [13] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [14] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [15] 楼国锋, 于歆杰, 卢诗华. 引入界面耦合系数的长片型磁电层状复合材料的等效电路模型. 物理学报, 2018, 67(2): 027501. doi: 10.7498/aps.67.20172080
    [16] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [17] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [19] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证. 物理学报, 2014, 63(8): 084103. doi: 10.7498/aps.63.084103
    [20] 胡辉勇, 张鹤鸣, 吕 懿, 戴显英, 侯 慧, 区健锋, 王 伟, 王喜嫒. SiGe HBT大信号等效电路模型. 物理学报, 2006, 55(1): 403-408. doi: 10.7498/aps.55.403
计量
  • 文章访问数:  717
  • PDF下载量:  25
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-31
  • 修回日期:  2024-08-21
  • 上网日期:  2024-09-07
  • 刊出日期:  2024-10-05

/

返回文章
返回