搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁性原子链中的拓扑超导相竞争

崔娜玮 高嘉忻 董慧薷 李传奇 罗小兵 肖进鹏

引用本文:
Citation:

磁性原子链中的拓扑超导相竞争

崔娜玮, 高嘉忻, 董慧薷, 李传奇, 罗小兵, 肖进鹏
cstr: 32037.14.aps.73.20241095

Topological superconducting phase competition in magnetic atomic rings

Cui Na-Wei, Gao Jia-Xin, Dong Hui-Ru, Li Chuan-Qi, Luo Xiao-Bing, Xiao Jin-Peng
cstr: 32037.14.aps.73.20241095
PDF
HTML
导出引用
  • 穿过磁性原子环的磁通能够诱导拓扑超导, 这种方法既不需要自旋轨道耦合也不需要螺旋磁序, 为实现低维拓扑超导提供新的思路. 本文介绍了在二维s波超导表面环状沉积铁磁序磁性原子链模型, 阐述了在此模型中磁通诱导拓扑超导的原理. 同时考虑实际实验, 磁性原子链打破了二维衬底表面的空间反演对称性, 带来了Rashba自旋轨道耦合, 进而导致原子链螺旋磁序的出现. 研究了Rashba自旋轨道耦合和螺旋磁序对拓扑超导态的影响. 结果发现, 自旋轨道耦合对原有拓扑态具有破坏性的影响, 而螺旋磁序只是推动了相变点在参数空间的转移, 不破坏原有拓扑态.
    A magnetic flux threading through magnetic atomic rings can induce topological superconductivity. It provides a novel approach to achieving low-dimensional (2D) topological superconductivity, which requires neither spin-orbit coupling nor helical magnetic order. In this paper, we introduce a topological superconductor model by depositing a ferromagnetic atomic ring on the surface of a 2D s-wave superconductor. When the moments of the magnetic atoms are perpendicular to the external magnetic field, a magnetic flux can induce topological superconductivity. Considering practical experiments, because the magnetic atomic chain breaks the inversion symmetry of the surface of the 2D substrate, the Rashba spin-orbit coupling (SOC) is introduced, leading to the appearance of helical magnetic order in the atomic chain. According to previous researches, this helical magnetic order ensures that the magnetic moments of the ring are perpendicular to the external magnetic field, and the patch angle of neighbor moment of the helical order is proportional to the strength of the SOC. However, the helical order or Rashba SOC may introduce topological superconductivity on their own. It is meaningful to investigate the influence of the effects of the Rashba SOC and helical magnetic order on the flux induced topological superconducting states. We find that the Rashba SOC has a disruptive effect on the existing topological state, while helical magnetic order merely shifts its transition position in the parameter space. Therefore, when selecting materials for experiment, it is recommended to choose materials with lower Rashba SOC strength.
      通信作者: 肖进鹏, xiaojinpeng2018@163.com
    • 基金项目: 国家自然科学基金(批准号: 11947082, 12375022, 11975110)和江西省教育厅科技计划(批准号: GJJ190577)资助的课题.
      Corresponding author: Xiao Jin-Peng, xiaojinpeng2018@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11947082, 12375022, 11975110) and the Scientific and Technological Research Fund of Jiangxi Provincial Education Department, China (Grant No. GJJ190577).
    [1]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [2]

    Li J, Chen H, Drozdov I K, Yazdani A, Bernevig B A, MacDonald A H 2014 Phys. Rev. B 90 235433Google Scholar

    [3]

    Sau J D, Brydon P M R 2015 Phys. Rev. Lett. 115 127003Google Scholar

    [4]

    Heimes A, Mendler D, Kotetes P 2015 New J. Phys. 17 23023

    [5]

    Brydon P M R, Das Sarma S, Hui H, Sau J D 2015 Phys. Rev. B 91 064505Google Scholar

    [6]

    Kim H, Palacio-Morales A, Posske T, Rózsa L, Palotás K, Szunyogh L, Thorwart M, Wiesendanger R 2018 Sci. Adv. 4 eaar5251Google Scholar

    [7]

    Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R, Wiebe J 2021 Nat. Phys. 17 943Google Scholar

    [8]

    Schneider L, Beck P, Rózsa L, Posske T, Wiebe J, Wiesendanger R 2023 Nat. Commun. 14 2742Google Scholar

    [9]

    Choy T P, Edge J M, Akhmerov A R, Beenakker C W J 2011 Phys. Rev. B 84 195442Google Scholar

    [10]

    Martin I, Morpurgo A F 2012 Phys. Rev. B 85 144505Google Scholar

    [11]

    Braunecker B, Simon P 2013 Phys. Rev. Lett. 111 147202Google Scholar

    [12]

    Pientka F, Glazman L I, von Oppen F 2013 Phys. Rev. B 88 155420Google Scholar

    [13]

    Klinovaja J, Stano P, Yazdani A, Loss D 2013 Phys. Rev. Lett. 111 186805Google Scholar

    [14]

    Vazifeh M M, Franz M 2013 Phys. Rev. Lett. 111 206802Google Scholar

    [15]

    Nadj-Perge S, Drozdov I K, Bernevig B A, Yazdani A 2013 Phys. Rev. B 88 020407Google Scholar

    [16]

    Pöyhönen K, Westström A, Röntynen J, Ojanen T 2014 Phys. Rev. B 89 115109Google Scholar

    [17]

    Kim Y, Cheng M, Bauer B, Lutchyn R M, Das Sarma S 2014 Phys. Rev. B 90 060401(RGoogle Scholar

    [18]

    Reis I, Marchand D J J, Franz M 2014 Phys. Rev. B 90 085124Google Scholar

    [19]

    Westström A, Pöyhönen K, Ojanen T 2015 Phys. Rev. B 91 064502Google Scholar

    [20]

    Xiao J P, An J 2015 New J. Phys. 17 113034Google Scholar

    [21]

    Pawlak R, Kisiel M, Klinovaja J, Meier T, Kawai S, Glatzel T, Loss D, Meyer E 2016 npj Quantum Inf. 2 16035Google Scholar

    [22]

    Hess R, Legg H F, Loss D, Klinovaja J 2022 Phys. Rev. B 106 104503Google Scholar

    [23]

    Röntynen J, Ojanen T 2014 Phys. Rev. B 90 180503Google Scholar

    [24]

    Schneider L, Brinker S, Steinbrecher M, Hermenau J, Posske T, Dias M D S, Lounis S, Wiesendanger R, Wiebe J 2020 Nat. Commun. 11 4707Google Scholar

    [25]

    Xiao J P, Hu Q, Luo X B 2024 Phys. Rev. B 109 205420Google Scholar

    [26]

    Li J, Neupert T, Bernevig B A, Yazdani A 2016 Nat. Commun. 7 10395Google Scholar

    [27]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [28]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [29]

    Ryu S, Schnyder A P, Furusaki A, Ludwig A W W 2010 New J. Phys. 12 065010Google Scholar

  • 图 1  (a)磁性原子以铁磁序次近邻沉积在空心圆筒s波超导表面的示意图; (b)不引入超导时正常态磁性原子链能带. (c), (d)引入超导配对后的能带, $ V=0.4, \;JS=0.5,\; \varDelta =0.1,\; \phi =0.04{\mathrm{\pi }} $, 黑色箭头表示自旋 (c)当化学势落于能隙$ \delta JS $之间时, 超导态有能隙, $ \mu =0.1 $; (d)图化学势落于$ \delta JS $以外, 超导态无能隙, $ \mu =-2 $

    Fig. 1.  (a) Schematic of magnetic atoms deposited in a ferromagnetic order as next-nearest neighbors on the surface of an s-wave superconductor on the surface of a hollow cylindrical s-wave superconductor; (b) the band structure of the normal state of the ring. (c), (d) The band structures of the superconducting states with $ V=0.4,\; JS=0.5,\; \varDelta =0.1,\; \phi =0.04{\mathrm{\pi }}, $ the black arrows represent spin up or dowm: (c) When the chemical potential falls between the energy gap $ \delta JS $ in the normal state, the superconducting state is gapped, $ \mu =0.1 $; (d) the superconducting state is gapless when the chemical potential falls outside the energy gap $ \delta JS $ in the normal state, $ \mu =-2 $.

    图 2  $ JS=0.5,\; \mu =0.1,\; \phi =0.04{\mathrm{\pi }} $ (a)铁磁链模型(1)的开边界能谱图, 包含了200个子格, $ V=0.4 $; (b)此模型的拓扑相图,

    Fig. 2.  $ JS=0.5,\; \mu =0.1, \;\phi =0.04{\mathrm{\pi }}: $(a) The energy spectrum of the ferromagnetic ring model (1) on the condition of open boundaries with 200 sites, $ V=0.4 $; (b) the topological phase diagram.

    图 3  铁磁链在不同自旋轨道耦合强度$ {\alpha }_{{\mathrm{R}}} $下的能带图和开边界能谱图, $ JS=0.4,\; \phi =0.06{\mathrm{\pi }},\; V=0.4, \;\varDelta =0.3 $, 开边界链长100个格子 (a)—(c)正常态能带; (d)—(f)开边界扫描化学势的能谱图, 其参数与(a)—(c)分别对应, $ A-B $和$ {A}'-{B}' $之间无能隙, $ M $是$ {Z}_{2} $拓扑数, $ - $1代表拓扑非平庸; (g), (h) $ {\alpha }_{{\mathrm{R}}}=0 $和$ {\alpha }_{{\mathrm{R}}}=0.3 $的超导能带图, 化学势为$ \mu =-2 $, (h)中小图放大了能隙附近的能带, 便于观察能隙

    Fig. 3.  The band structures and open boundary energy spectrums of the ferromagnetic ring with different strengths of SOC $ {\alpha }_{{\mathrm{R}}, }\;JS=0.4, \;\phi =0.06{\mathrm{\pi }},\;V=0.4,\; \varDelta =0.3 $, the open boundary ring contains 100 sites: (a)–(c) The normal state energy bands; (d)–(f) the open boundary energy spectra by scanning the chemical potential, with the parameters corresponding to (a)–(c) respectively, $ A-B $ and $ {A}'-{B}' $ are gapless. $ M $ is $ {Z}_{2} $ invariant while $ -1 $ indicates topologically nontrivial; (g), (h) the superconducting energy bands with $ \mu =-2 $ when $ {\alpha }_{{\mathrm{R}}}=0 $ and $ {\alpha }_{{\mathrm{R}}}=0.3 $, respectively, the inset in (h) shows the band structure near the gap near zero energy.

    图 4  不同螺旋角下的磁性原子链能带图和开边界能谱图, $ JS=0.4, \;\phi =0.06{\mathrm{\pi }}, \;V=0.4 $. 开边界原子链包含100个格子 (a)—(c)正常态能带; (d)—(f)开边界扫描化学势的能谱图, 其参数与(a)—(c)分别对应, 超导配对强度为$ \varDelta =0.3 $

    Fig. 4.  The band structures and open boundary energy spectra of the magnetic ring with different patch angles, $ JS=0.4, $$ \phi =0.06{\mathrm{\pi }},\;V=0.4, $ the open boundary ring contains 100 sites: (a)–(c) The bands of the normal states; (d)–(f) the open boundary energy spectrums by scanning the chemical potential, with $ \varDelta =0.3 $.

    图 5  不同螺旋角和自旋轨道耦合强度下的100个磁性原子链开边界能谱图. 图中磁性原子链包含100个格子, 其中超导配对强度为$ \varDelta =0.3 $, $ JS=V=0.4,\; \phi =0.06{\mathrm{\pi }} $

    Fig. 5.  The open boundary energy spectrums of the magnetic atomic ring with different strengths of SOC and patch angles. The ring contains 100 sites and $ \varDelta =0.3 $, $ JS=V=0.4,\; \phi =0.06{\mathrm{\pi }} $.

  • [1]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [2]

    Li J, Chen H, Drozdov I K, Yazdani A, Bernevig B A, MacDonald A H 2014 Phys. Rev. B 90 235433Google Scholar

    [3]

    Sau J D, Brydon P M R 2015 Phys. Rev. Lett. 115 127003Google Scholar

    [4]

    Heimes A, Mendler D, Kotetes P 2015 New J. Phys. 17 23023

    [5]

    Brydon P M R, Das Sarma S, Hui H, Sau J D 2015 Phys. Rev. B 91 064505Google Scholar

    [6]

    Kim H, Palacio-Morales A, Posske T, Rózsa L, Palotás K, Szunyogh L, Thorwart M, Wiesendanger R 2018 Sci. Adv. 4 eaar5251Google Scholar

    [7]

    Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R, Wiebe J 2021 Nat. Phys. 17 943Google Scholar

    [8]

    Schneider L, Beck P, Rózsa L, Posske T, Wiebe J, Wiesendanger R 2023 Nat. Commun. 14 2742Google Scholar

    [9]

    Choy T P, Edge J M, Akhmerov A R, Beenakker C W J 2011 Phys. Rev. B 84 195442Google Scholar

    [10]

    Martin I, Morpurgo A F 2012 Phys. Rev. B 85 144505Google Scholar

    [11]

    Braunecker B, Simon P 2013 Phys. Rev. Lett. 111 147202Google Scholar

    [12]

    Pientka F, Glazman L I, von Oppen F 2013 Phys. Rev. B 88 155420Google Scholar

    [13]

    Klinovaja J, Stano P, Yazdani A, Loss D 2013 Phys. Rev. Lett. 111 186805Google Scholar

    [14]

    Vazifeh M M, Franz M 2013 Phys. Rev. Lett. 111 206802Google Scholar

    [15]

    Nadj-Perge S, Drozdov I K, Bernevig B A, Yazdani A 2013 Phys. Rev. B 88 020407Google Scholar

    [16]

    Pöyhönen K, Westström A, Röntynen J, Ojanen T 2014 Phys. Rev. B 89 115109Google Scholar

    [17]

    Kim Y, Cheng M, Bauer B, Lutchyn R M, Das Sarma S 2014 Phys. Rev. B 90 060401(RGoogle Scholar

    [18]

    Reis I, Marchand D J J, Franz M 2014 Phys. Rev. B 90 085124Google Scholar

    [19]

    Westström A, Pöyhönen K, Ojanen T 2015 Phys. Rev. B 91 064502Google Scholar

    [20]

    Xiao J P, An J 2015 New J. Phys. 17 113034Google Scholar

    [21]

    Pawlak R, Kisiel M, Klinovaja J, Meier T, Kawai S, Glatzel T, Loss D, Meyer E 2016 npj Quantum Inf. 2 16035Google Scholar

    [22]

    Hess R, Legg H F, Loss D, Klinovaja J 2022 Phys. Rev. B 106 104503Google Scholar

    [23]

    Röntynen J, Ojanen T 2014 Phys. Rev. B 90 180503Google Scholar

    [24]

    Schneider L, Brinker S, Steinbrecher M, Hermenau J, Posske T, Dias M D S, Lounis S, Wiesendanger R, Wiebe J 2020 Nat. Commun. 11 4707Google Scholar

    [25]

    Xiao J P, Hu Q, Luo X B 2024 Phys. Rev. B 109 205420Google Scholar

    [26]

    Li J, Neupert T, Bernevig B A, Yazdani A 2016 Nat. Commun. 7 10395Google Scholar

    [27]

    Kitaev A Y 2001 Phys. Usp. 44 131Google Scholar

    [28]

    Schnyder A P, Ryu S, Furusaki A, Ludwig A W W 2008 Phys. Rev. B 78 195125Google Scholar

    [29]

    Ryu S, Schnyder A P, Furusaki A, Ludwig A W W 2010 New J. Phys. 12 065010Google Scholar

  • [1] 刘恩克. 磁序与拓扑的耦合: 从基础物理到拓扑磁电子学. 物理学报, 2024, 73(1): 017103. doi: 10.7498/aps.73.20231711
    [2] 谢玲凤, 董金瓯, 赵雪芹, 杨巧林, 宁凡龙. In掺杂对磁性半导体Li1.05(Zn0.925, Mn0.075)As中铁磁序的调控. 物理学报, 2024, 73(8): 087501. doi: 10.7498/aps.73.20231949
    [3] 徐磊, 李沛岭, 吕昭征, 沈洁, 屈凡明, 刘广同, 吕力. 马约拉纳零能模的输运探测. 物理学报, 2023, 72(17): 177401. doi: 10.7498/aps.72.20230951
    [4] 初纯光, 王安琦, 廖志敏. 拓扑半金属-超导体异质结的约瑟夫森效应. 物理学报, 2023, 72(8): 087401. doi: 10.7498/aps.72.20230397
    [5] 梁超, 张洁, 赵可, 羊新胜, 赵勇. 拓扑超导体FeSexTe1–x单晶超导性能与磁通钉扎. 物理学报, 2020, 69(23): 237401. doi: 10.7498/aps.69.20201125
    [6] 王靖. 手征马约拉纳费米子. 物理学报, 2020, 69(11): 117302. doi: 10.7498/aps.69.20200534
    [7] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [8] 梁奇锋, 王志, 川上拓人, 胡晓. 拓扑超导Majorana束缚态的探索. 物理学报, 2020, 69(11): 117102. doi: 10.7498/aps.69.20190959
    [9] 顾开元, 罗天创, 葛军, 王健. 拓扑材料中的超导. 物理学报, 2020, 69(2): 020301. doi: 10.7498/aps.69.20191627
    [10] 李耀义, 贾金锋. 在人工拓扑超导体磁通涡旋中寻找Majorana零能模. 物理学报, 2019, 68(13): 137401. doi: 10.7498/aps.68.20181698
    [11] 孟康康, 赵旭鹏, 苗君, 徐晓光, 赵建华, 姜勇. 铁磁/非磁金属异质结中的拓扑霍尔效应. 物理学报, 2018, 67(13): 131202. doi: 10.7498/aps.67.20180369
    [12] 郝宁, 胡江平. 铁基超导中拓扑量子态研究进展. 物理学报, 2018, 67(20): 207101. doi: 10.7498/aps.67.20181455
    [13] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学. 物理学报, 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [14] 齐伟华, 李壮志, 马丽, 唐贵德, 吴光恒, 胡凤霞. 磁性材料磁有序的分子场来源. 物理学报, 2017, 66(6): 067501. doi: 10.7498/aps.66.067501
    [15] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构. 物理学报, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [16] 陈玉, 陈家麟, 查国桥, 周世平. 石墨烯铁磁-绝缘层-超导结的输运. 物理学报, 2014, 63(17): 177402. doi: 10.7498/aps.63.177402
    [17] 金霞, 董正超, 梁志鹏, 仲崇贵. 磁性d波超导/铁磁/磁性d波超导结中的约瑟夫森效应. 物理学报, 2013, 62(4): 047401. doi: 10.7498/aps.62.047401
    [18] 杜坚, 李春光, 秦芳. 铁磁/半导体/铁磁结构的双量子环自旋输运的特性. 物理学报, 2009, 58(5): 3448-3455. doi: 10.7498/aps.58.3448
    [19] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [20] 杜安, 魏国柱, 聂惠权. 高Tc超导体的反铁磁理论计算. 物理学报, 1992, 41(10): 1686-1693. doi: 10.7498/aps.41.1686
计量
  • 文章访问数:  161
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-05
  • 修回日期:  2024-09-22
  • 上网日期:  2024-11-06

/

返回文章
返回