-
Owing to vortex light possessing the additional orbital angular momentum, its interaction with atoms and molecules can reveal in more depth insights into dynamics than the plane wave light. This paper aims to establish a theoretical framework for the photoionization of atoms and molecules by Bessel vortex light. In the case of macroscopic gas target, helium atoms are randomly dispersed around the entire region of the Bessel vortex beam. The final photoionization cross-section is not dependent on the angular momentum of the vortex light, but depends on the opening angle of the Bessel vortex light. This paper systematically computes the variation of photoionization cross-section with photon energy and the angular distributions of photoelectrons under different geometric conditions. The computation results demonstrate that there is a significant difference in the photo-ionization cross-section between vortex light and plane wave light. In order to further investigate the characteristics of the phase singularity of the vortex light (when the light intensity reaches zero), this paper further calculates the photo-ionization of the vortex light with opening angles of 5°, 30°, and 60° at the phase singularity, respectively. The results indicate that the angular distribution of photoelectrons at these three angles is significantly dependent on the orbital angular momentum and the opening angle of the vortex light, and the calculated absolute cross-section does not equate to zero. This represents an important distinguishing feature of the Bessel vortex light when interacting with atoms, distinguishing it from the plane wave. This work lays the foundation for further studying vortex light photo-ionization and their applications.
[1] Torres J P, Torner L 2011 Twisted Photons: Application of Light with Orbital Angular Momentum (New York: John Wiley
[2] Andrews D, Babiker M 2013 The Angular Momentum of Light (Cambridge: Cambridge University Press
[3] Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161Google Scholar
[4] Babiker M, Bennett C R, Andrews D L, Dávila Romero L C 2002 Phys. Rev. Lett. 89 143601Google Scholar
[5] Surzhykov A, Seipt D, Fritzsche S 2016 Phys. Rev. A 94 033420Google Scholar
[6] Franke-Arnold S, Allen L, Padgett M 2008 Laser Photonics Rev. 2 299Google Scholar
[7] Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmerson K, Phillips W D 2006 Phys. Rev. Lett. 97 170406Google Scholar
[8] He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826Google Scholar
[9] Afanasev A, Carlson C E, Mukherjee A 2013 Phys. Rev. A 88 033841Google Scholar
[10] Afanasev A, Carlson C E, Solyanik M 2017 J. Opt. 19 105401Google Scholar
[11] Alharbi A, Lyras A, Lembessis V E, Al-Dossary O 2023 Results in Physics 46 106311Google Scholar
[12] Peshkov A A, Bidasyuk Y M, Lange R, Huntemann N, Peik E, Surzhykov A 2023 Phys. Rev. A 107 023106Google Scholar
[13] Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nat. Commun. 7 12998Google Scholar
[14] Picón A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 Opt. Express 18 3660Google Scholar
[15] Wätzel J, Berakdar J 2016 Phys. Rev. A 94 033414Google Scholar
[16] Matula O, Hayrapetyan A G, Serbo V G, Surzhykov A, Fritzsche S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 205002Google Scholar
[17] Peshkov A A, Fritzsche S, Surzhykov A 2015 Phys. Rev. A 92 043415Google Scholar
[18] Kiselev M D, Gryzlova E V, Grum-Grzhimailo A N 2023 Phys. Rev. A 108 023117Google Scholar
[19] De Ninno G, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nat. Photonics 14 554Google Scholar
[20] Davis B S, Kaplan L, McGuire J H 2013 J. Opt. 15 035403Google Scholar
[21] Jentschura U D, Serbo V G 2011 Phys. Rev. Lett. 106 013001Google Scholar
[22] Picón A, Benseny A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 New J. Phys. 12 083053Google Scholar
[23] Rouxel J R, Rösner B, Karpov D, Bacellar C, Mancini G F, Zinna F, Kinschel D, Cannelli O, Oppermann M, Svetina C, Diaz A, Lacour J, David C, Chergui M 2022 Nat. Photonics 16 570Google Scholar
[24] Bégin J L, Jain A, Parks A, Hufnagel F, Corkum P, Karimi E, Brabec T, Bhardwaj R 2023 Nat. Photonics 17 82Google Scholar
[25] Li X, Hu C, Tian Y, Liu Y, Chen H, Xu Y, Lu M H, Fu Y 2023 Sci. Bull. 68 2555Google Scholar
[26] Fanciulli M, Pancaldi M, Pedersoli E, Vimal M, Bresteau D, Luttmann M, De Angelis D, Ribič P R, Rösner B, David C, Spezzani C, Manfredda M, Sousa R, Prejbeanu I L, Vila L, Dieny B, De Ninno G, Capotondi F, Sacchi M, Ruchon T 2022 Phys. Rev. Lett. 128 077401Google Scholar
[27] Brullot W, Vanbel M K, Swusten T, Verbiest T 2016 Sci. Adv. 2 e1501349Google Scholar
[28] Forbes K A, Andrews D L 2018 Opt. Lett. 43 435Google Scholar
[29] Ye L, Rouxel J R, Asban S, Rösner B, Mukamel S 2019 J. Chem. Theory Comput. 15 4180Google Scholar
[30] Kerber R M, Fitzgerald J M, Oh S S, Reiter D E, Hess O 2018 Commun. Phys. 1 87Google Scholar
[31] Forbes K A, Jones G A 2021 Phys. Rev. A 103 053515Google Scholar
[32] Cooper J W 1993 Phys. Rev. A 47 1841Google Scholar
[33] Scholz-Marggraf H M, Fritzsche S, Serbo V G, Afanasev A, Surzhykov A 2014 Phys. Rev. A 90 013425Google Scholar
[34] Brumboiu I E, Eriksson O, Norman P 2019 J. Chem. Phys. 150 044306Google Scholar
[35] Waitz M, Bello R Y, Metz D, Lower J, Trinter F, Schober C, Keiling M, Lenz U, Pitzer M, Mertens K, Martins M, Viefhaus J, Klumpp S, Weber T, Schmidt L P H, Williams J B, Schöffler M S, Serov V V, Kheifets A S, Argenti L, Palacios A, Martín F, Jahnke T, Dörner R 2017 Nat. Commun. 8 2266Google Scholar
[36] Ivanov I P, Serbo V G 2011 Phys. Rev. A 84 033804Google Scholar
[37] Gong M, Cheng Y, Zhang S B, Chen X 2022 Phys. Rev. A 106 012818Google Scholar
[38] Varshalovich D A, Moskalev A N, Khersonskii V K 1988 Quantum Theory of Angular Momentum (Singapore: World Scientific
[39] Ivanov V K, Chaikovskaia A D, Karlovets D V 2023 Phys. Rev. A 108 062803Google Scholar
[40] Duan J, Gong M, Cheng Y, Zhang S B 2024 Phys. Rev. A 109 063114Google Scholar
[41] Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar
[42] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar
[43] Dunning Jr.T H 1989 J. Chem. Phys. 90 1007Google Scholar
[44] Sanna N, Baccarelli I, Morelli G 2009 Comput. Phys. Commun. 180 2544Google Scholar
-
图 1 贝塞尔涡旋光束入射原子靶的示意图, 其中碰撞参数为$ {{\boldsymbol{b}}} $(在笛卡尔坐标系中表示为($ b_x , b_y $), 在极坐标系中表示为($b, \phi_b $)), 定义于$ xy $平面内; 发射光电子的立体角由$ \theta_{{\mathrm{e}}} $和$ \phi_{{\mathrm{e}}} $表示(图中未显示)
Fig. 1. Overview of the twist Bessel light incidents on a molecular target with impact parameter $ {{\boldsymbol{b}}} $ (($ b_x , b_y $) in Cartesian coordinate or ($b, \phi_b $) in polar coordinate), defined in $ xy $ plane. The solid angle of the emitted photoelectron is described by $ \theta_{{\mathrm{e}}} $ and $ \phi_{{\mathrm{e}}} $ (not shown in the image).
图 2 电子探测器在不同位置处光电离截面随光子能量的变化 (a) $ \theta_{{\mathrm{e}}} = 1^\circ,~\phi_{{\mathrm{e}}} = 0^\circ $; (b) $ \theta_{{\mathrm{e}}} = 10^\circ,~ \phi_{{\mathrm{e}}} = 0^\circ $; (c) $ \theta_{{\mathrm{e}}} = 90^\circ,~ \phi_{{\mathrm{e}}} = 90^\circ $
Fig. 2. Photoionization cross section as a function of photon energy detected at different ejected angles: (a) $ \theta_{{\mathrm{e}}} = 1^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (b) $ \theta_{{\mathrm{e}}} = 10^\circ $, $ \phi_{{\mathrm{e}}} = 0^\circ $; (c) $ \theta_{{\mathrm{e}}} = 90^\circ $, $ \phi_{{\mathrm{e}}} = 90^\circ $.
图 3 光子能量分别为(a) 1000 eV和(b) 10000 eV时, 在$ xz $平面的光电离截面角分布; 光子能量分别为(c) 1000 eV和(d) 10000 eV时, 在$ xy $平面的光电离截面角分布
Fig. 3. Angular distribution of the photoionization cross section: (a), (b) In $ xz $ plane, the corresponding photon energies are 1000 eV and 10000 eV, respectively; (c), (d) the photoionization cross section in $ xy $ plane, corresponding to photon energies of 1000 eV and 10000 eV, respectively.
图 4 不同开放角和不同TAM $ m_{\gamma} $下的涡旋光诱导的光电离截面在$ xz $平面的角分布(光子能量为1000 eV), 图中三列分别代表涡旋光开放角为5°, 30°和60°, 五行代表不同的TAM $ m_{\gamma} $取值2, 1, 0, –1, –2
Fig. 4. Angular distribution of photoionization cross sections with different opening angles and TAM with photon energy of 1000 eV. The opening angles of the three columns are 5°, 30° and 60°, respectively. The five rows represent different TAM values, which are 2, 1, 0, –1, –2, respectively.
-
[1] Torres J P, Torner L 2011 Twisted Photons: Application of Light with Orbital Angular Momentum (New York: John Wiley
[2] Andrews D, Babiker M 2013 The Angular Momentum of Light (Cambridge: Cambridge University Press
[3] Yao A M, Padgett M J 2011 Adv. Opt. Photon. 3 161Google Scholar
[4] Babiker M, Bennett C R, Andrews D L, Dávila Romero L C 2002 Phys. Rev. Lett. 89 143601Google Scholar
[5] Surzhykov A, Seipt D, Fritzsche S 2016 Phys. Rev. A 94 033420Google Scholar
[6] Franke-Arnold S, Allen L, Padgett M 2008 Laser Photonics Rev. 2 299Google Scholar
[7] Andersen M F, Ryu C, Cladé P, Natarajan V, Vaziri A, Helmerson K, Phillips W D 2006 Phys. Rev. Lett. 97 170406Google Scholar
[8] He H, Friese M E J, Heckenberg N R, Rubinsztein-Dunlop H 1995 Phys. Rev. Lett. 75 826Google Scholar
[9] Afanasev A, Carlson C E, Mukherjee A 2013 Phys. Rev. A 88 033841Google Scholar
[10] Afanasev A, Carlson C E, Solyanik M 2017 J. Opt. 19 105401Google Scholar
[11] Alharbi A, Lyras A, Lembessis V E, Al-Dossary O 2023 Results in Physics 46 106311Google Scholar
[12] Peshkov A A, Bidasyuk Y M, Lange R, Huntemann N, Peik E, Surzhykov A 2023 Phys. Rev. A 107 023106Google Scholar
[13] Schmiegelow C T, Schulz J, Kaufmann H, Ruster T, Poschinger U G, Schmidt-Kaler F 2016 Nat. Commun. 7 12998Google Scholar
[14] Picón A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 Opt. Express 18 3660Google Scholar
[15] Wätzel J, Berakdar J 2016 Phys. Rev. A 94 033414Google Scholar
[16] Matula O, Hayrapetyan A G, Serbo V G, Surzhykov A, Fritzsche S 2013 J. Phys. B: At. Mol. Opt. Phys. 46 205002Google Scholar
[17] Peshkov A A, Fritzsche S, Surzhykov A 2015 Phys. Rev. A 92 043415Google Scholar
[18] Kiselev M D, Gryzlova E V, Grum-Grzhimailo A N 2023 Phys. Rev. A 108 023117Google Scholar
[19] De Ninno G, Wätzel J, Ribič P R, Allaria E, Coreno M, Danailov M B, David C, Demidovich A, Di Fraia M, Giannessi L, Hansen K, Krušič Š, Manfredda M, Meyer M, Mihelič A, Mirian N, Plekan O, Ressel B, Rösner B, Simoncig A, Spampinati S, Stupar M, Žitnik M, Zangrando M, Callegari C, Berakdar J 2020 Nat. Photonics 14 554Google Scholar
[20] Davis B S, Kaplan L, McGuire J H 2013 J. Opt. 15 035403Google Scholar
[21] Jentschura U D, Serbo V G 2011 Phys. Rev. Lett. 106 013001Google Scholar
[22] Picón A, Benseny A, Mompart J, de Aldana J R V, Plaja L, Calvo G F, Roso L 2010 New J. Phys. 12 083053Google Scholar
[23] Rouxel J R, Rösner B, Karpov D, Bacellar C, Mancini G F, Zinna F, Kinschel D, Cannelli O, Oppermann M, Svetina C, Diaz A, Lacour J, David C, Chergui M 2022 Nat. Photonics 16 570Google Scholar
[24] Bégin J L, Jain A, Parks A, Hufnagel F, Corkum P, Karimi E, Brabec T, Bhardwaj R 2023 Nat. Photonics 17 82Google Scholar
[25] Li X, Hu C, Tian Y, Liu Y, Chen H, Xu Y, Lu M H, Fu Y 2023 Sci. Bull. 68 2555Google Scholar
[26] Fanciulli M, Pancaldi M, Pedersoli E, Vimal M, Bresteau D, Luttmann M, De Angelis D, Ribič P R, Rösner B, David C, Spezzani C, Manfredda M, Sousa R, Prejbeanu I L, Vila L, Dieny B, De Ninno G, Capotondi F, Sacchi M, Ruchon T 2022 Phys. Rev. Lett. 128 077401Google Scholar
[27] Brullot W, Vanbel M K, Swusten T, Verbiest T 2016 Sci. Adv. 2 e1501349Google Scholar
[28] Forbes K A, Andrews D L 2018 Opt. Lett. 43 435Google Scholar
[29] Ye L, Rouxel J R, Asban S, Rösner B, Mukamel S 2019 J. Chem. Theory Comput. 15 4180Google Scholar
[30] Kerber R M, Fitzgerald J M, Oh S S, Reiter D E, Hess O 2018 Commun. Phys. 1 87Google Scholar
[31] Forbes K A, Jones G A 2021 Phys. Rev. A 103 053515Google Scholar
[32] Cooper J W 1993 Phys. Rev. A 47 1841Google Scholar
[33] Scholz-Marggraf H M, Fritzsche S, Serbo V G, Afanasev A, Surzhykov A 2014 Phys. Rev. A 90 013425Google Scholar
[34] Brumboiu I E, Eriksson O, Norman P 2019 J. Chem. Phys. 150 044306Google Scholar
[35] Waitz M, Bello R Y, Metz D, Lower J, Trinter F, Schober C, Keiling M, Lenz U, Pitzer M, Mertens K, Martins M, Viefhaus J, Klumpp S, Weber T, Schmidt L P H, Williams J B, Schöffler M S, Serov V V, Kheifets A S, Argenti L, Palacios A, Martín F, Jahnke T, Dörner R 2017 Nat. Commun. 8 2266Google Scholar
[36] Ivanov I P, Serbo V G 2011 Phys. Rev. A 84 033804Google Scholar
[37] Gong M, Cheng Y, Zhang S B, Chen X 2022 Phys. Rev. A 106 012818Google Scholar
[38] Varshalovich D A, Moskalev A N, Khersonskii V K 1988 Quantum Theory of Angular Momentum (Singapore: World Scientific
[39] Ivanov V K, Chaikovskaia A D, Karlovets D V 2023 Phys. Rev. A 108 062803Google Scholar
[40] Duan J, Gong M, Cheng Y, Zhang S B 2024 Phys. Rev. A 109 063114Google Scholar
[41] Becke A D 1993 J. Chem. Phys. 98 5648Google Scholar
[42] Lee C, Yang W, Parr R G 1988 Phys. Rev. B 37 785Google Scholar
[43] Dunning Jr.T H 1989 J. Chem. Phys. 90 1007Google Scholar
[44] Sanna N, Baccarelli I, Morelli G 2009 Comput. Phys. Commun. 180 2544Google Scholar
计量
- 文章访问数: 340
- PDF下载量: 29
- 被引次数: 0