搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电悬浮条件下难熔Nb81.7Si17.3Hf合金的相选择与共晶生长机制

万梓煊 胡亮 金英捷 魏炳波

引用本文:
Citation:

静电悬浮条件下难熔Nb81.7Si17.3Hf合金的相选择与共晶生长机制

万梓煊, 胡亮, 金英捷, 魏炳波
cstr: 32037.14.aps.74.20241194

Phase selection mechanism and eutectic growth kinetics of refractory Nb81.7Si17.3Hf alloy under electrostatic levitation condition

WAN Zixuan, HU Liang, JIN Yingjie, WEI Bingbo
cstr: 32037.14.aps.74.20241194
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用静电悬浮技术实现了液态Nb81.7Si17.3Hf合金在不同过冷度下的快速凝固, 实验最大过冷度达404 K (0.19TL). 实验测定出其液态超过冷临界过冷度为527 K (0.24TL). 当液相过冷度超过194 K时, 合金相组成由(Nb)和αNb5Si3转变为(Nb)和Nb3Si. 若过冷度小于此临界值, 凝固过程中(Nb)相优先形核生长, 剩余液相形成了(Nb)+αNb5Si3层片共晶. 高速摄影实验发现初生相的生长速度可达89.4 mm/s. 在194 K以上深过冷条件下, (Nb)初生相将消失, (Nb)+Nb3Si非规则共晶在过冷熔体中直接生长. 非规则共晶生长速度随过冷度呈幂函数增大, 最高可达115.9 mm/s. 由于共晶间距减小和(Nb)相体积分数增大, 在194 K过冷度下合金断裂韧性可达21.9 MPa·m1/2, 提升至小过冷条件的3.4倍.
    The phase selection mechanism and eutectic growth kinetics of Nb81.7Si17.3Hf alloy are investigated by electrostatic levitation technique. The maximum undercooling of this alloy reaches 404 K (0.19TL). By analyzing the cooling curves, its hypercooling limit is obtained to be 527 K (0.24TL). A critical undercooling of 194 K is determined for the transition of solidification path. Below this undercooling threshold, (Nb) phase firstly nucleates and grows into primary dendrites, resulting in the enrichment of Si and Hf in the residual melt, which is conducive to the formation of the (Nb)+αNb5Si3 eutectics. Therefore, (Nb)+αNb5Si3 lamellar eutectics form in interdendritic space. With the increase of undercooling, the growth velocity of primary (Nb) dendritic follows a power function, while the eutectic growth velocity increases slowly. The maximum values of (Nb) dendritic reaches 89.4 mm/s. A modified LKT/BCT model is used to calculate the growth velocity of (Nb) dendrites. The results are in good agreement with the experimental values, indicating that after the LKT model is modified slightly, it can be used to describe the rapid dendrite growth behavior of the (Nb) phase in the Nb81.7Si17.3Hf alloy melt. Meanwhile, the lamellar spacing of (Nb)+αNb5Si3 eutectics notably decreases to 360 nm at 194 K undercooling. Above the critical threshold, the primary (Nb) dendrites disappear, whereas (Nb) phase and Nb3Si phase nucleate independently in the undercooled liquid and grow into anomalous eutectics. The growth velocity of anomalous eutectic exhibits a power function relationship with the increase of undercooling, with a maximum value of 115.9 mm/s. The interphase spacing of (Nb)+Nb3Si anomalous eutectics is larger than that of (Nb)+αNb5Si3 lamellar eutectics. Owing to the formation of nanosized eutectics and the increase of volume fraction of (Nb) phase, the alloy fracture toughness at 194 K reaches 21.9 MPa·m1/2, which is 3.4 times as large as that under small undercooling condition.
      通信作者: 魏炳波, bbwei@nwpu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFA0716301)、国家自然科学基金(批准号: 52088101, 52171047)和陕西省自然科学基金(批准号: 2023-JC-JQ-30)资助的课题.
      Corresponding author: WEI Bingbo, bbwei@nwpu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2021YFA0716301), the National Natural Science Foundation of China (Grant Nos. 52088101, 52171047), and the Scientific Research Program Funded by Shaanxi Province, China (Grant No. 2023-JC-JQ-30).
    [1]

    Wang J W, Chen H H, Zhang Z G, Wang B, Ma H T, Song M Q, Zhai J H, Ding L F 2021 J. Appl. Phys. 130 135104Google Scholar

    [2]

    Tsakiropoulos P 2022 Prog. Mater. Sci. 123 100714Google Scholar

    [3]

    Wang Q, Wang H P 2023 J. Phys. Condes. Matter 35 105401Google Scholar

    [4]

    Bewlay B P, Jackson M R, Zhao J C, Subramanian P R, Mendiratta M G, Lewandowski J J 2003 MRS Bull. 28 646Google Scholar

    [5]

    Guo Y L, Liang Y J, Lu W J, Jia L N, Li Z M, Peng H, Zhang H 2019 Appl. Surf. Sci. 486 22Google Scholar

    [6]

    Vellios N, Tsakiropoulos P 2007 Intermetallics 15 1518Google Scholar

    [7]

    Mendiratta M G, Dimiduk D M 1991 Scr. Metall. Mater. 25 237Google Scholar

    [8]

    Chen Y, Kolmogorov A N, Pettifor D G, Shang J X, Zhang Y 2010 Phys. Rev. B 82 184104Google Scholar

    [9]

    Sala K, Morankar S, Mitra R 2021 Metall. Mater. Trans. 52 1185Google Scholar

    [10]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204Google Scholar

    [11]

    Grammenos I, Tsakiropoulos P 2010 Intermetallics 18 242Google Scholar

    [12]

    Yang Y, Chang Y A, Zhao J C, Bewlay B P 2003 Intermetallics 11 407Google Scholar

    [13]

    Becker S, Devijver E, Molinier R, Jakse N 2020 Phys. Rev. B 102 104205Google Scholar

    [14]

    阮莹, 胡亮, 闫娜, 解文军, 魏炳波 2020 中国科学: 技术科学 50 603Google Scholar

    Ruan Y, Hu L, Yan N, Xie W J, Wei B 2020 Sci. Sin. Tech. 50 603Google Scholar

    [15]

    Warrender J M, Mathews J, Recht D, Smith M, Gradecak S, Aziz M J 2014 J. Appl. Phys. 115 163516Google Scholar

    [16]

    魏绍楼, 黄陆军, 常健, 杨尚京, 耿林 2016 物理学报 65 096101Google Scholar

    Wei S L, Huang L J, Chang J, Yang S J, Geng L 2016 Acta. Phys. Sin. 65 096101Google Scholar

    [17]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906Google Scholar

    [18]

    黄起森, 刘礼, 韦修勋, 李金富 2012 物理学报 61 166401Google Scholar

    Huang Q S, Liu L, Wei X X, Li J F 2012 Acta. Phys. Sin. 61 166401Google Scholar

    [19]

    Bertero G A, Hofmeister W H, Robinson M B, Bayuzick R J 1991 Metall Trans. A 22 2713Google Scholar

    [20]

    Wang Q, Zheng C H, Li M X, Hu L, Wang H P, Wei B 2023 Appl. Phys. Lett. 122 234102Google Scholar

    [21]

    Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei. B 2024 Adv. Mater. 36 2313162Google Scholar

    [22]

    Li M X, Wang H P, Lin M J, Zheng C H, Wei B 2022 Acta. Mater. 237 118157Google Scholar

    [23]

    Mohan D, Phanikumar G 2019 Phil. Trans. R. Soc. A 377 20180208.Google Scholar

    [24]

    Gale W, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Butterworth-Heinemann Publications) p8-1

    [25]

    Vinet B, Magnusson L, Fredriksson H, Desre P J 2002 J. Colloid. Sci. 255 363Google Scholar

    [26]

    Wang H P, Liao H, Chang J, Liu D N, Wang Q, Li M X, Zheng C H, Hu L, Wei B 2024 Mater. Today 75 386Google Scholar

    [27]

    Sekido N, Kimura Y, Miura S, Wei F G, Mishima Y 2006 J. Alloys. Compd. 425 223Google Scholar

    [28]

    Laugier M T 1987 J. Mater. Sci. Lett. 6 897Google Scholar

    [29]

    Chen D Z, Wang Q, Chen R R, Wang S, Su Y Q, Fu H Z 2022 J. Alloys. Compd. 928 167124Google Scholar

  • 图 1  Nb81.7Si17.3Hf合金的相组成分析 (a) 合金成分选择 (原子百分比); (b) XRD图谱

    Fig. 1.  Phase constitution analysis of Nb81.7Si17.3Hf alloy: (a) Selection of alloy composition (atomic percent); (b) XRD patterns.

    图 2  静电悬浮条件下Nb81.7Si17.3Hf合金的快速凝固过程 (a) 最大过冷度404 K时温度曲线; (b) 结晶平台持续时间与过冷度的关系

    Fig. 2.  Rapid solidification process of Nb81.7Si17.3Hf alloy under ESL condition: (a) Temperature curve at the maximum undercooling of 404 K; (b) thermal arrest time versus undercooling.

    图 3  Nb81.7Si17.3Hf合金再辉过程中原位高速摄影图像 (a) ΔT = 161 K; (b) ΔT = 271 K

    Fig. 3.  In situ high-speed photography observation of recalescence processes for Nb81.7Si17.3Hf alloy: (a) ΔT = 161 K; (b) ΔT = 271 K.

    图 4  枝晶与共晶生长速度随过冷度变化规律 (a) 初生(Nb)枝晶; (b) 共晶组织

    Fig. 4.  Dendrite and eutectic growth velocities versus undercooling: (a) Primary (Nb) dendrite; (b) eutectic.

    图 5  Nb81.7Si17.3Hf合金凝固组织演变规律 (a) 母合金; (b) ΔT = 194 K; (c) ΔT = 219 K; (d) ΔT = 404 K

    Fig. 5.  Solidification microstructures of Nb81.7Si17.3Hf alloy at different undercoolings: (a) Master alloy; (b) ΔT = 194 K; (c) ΔT = 219 K; (d) ΔT = 404 K.

    图 6  Nb81.7Si17.3Hf合金凝固组织特征随过冷度变化规律 (a) (Nb)相体积分数; (b) 共晶间距

    Fig. 6.  Microstructure features of Nb81.7Si17.3Hf versus undercooling: (a) Volume fraction of (Nb) phase; (b) eutectic spacings.

    图 7  快速凝固Nb81.7Si17.3Hf合金微观力学性能 (a) 裂纹长度l和压痕半宽a与过冷度的关系, 插图(a1) 维氏硬度仪在样品表面产生的压痕形貌; (b)—(d) 合金显微硬度、弹性模量和断裂韧性与过冷度的关系

    Fig. 7.  Micromechanical properties of rapidly solidified Nb81.7Si17.3Hf alloy at different undercoolings: (a) Length of the crack a and the half width of indentation l versus undercooling, where the inset (a1) is indentation morphology produced by Vickers hardness tester on sample surface; (b)–(d) Vickers hardness, elastic modulus and fracture toughness versus undercooling.

    表 1  计算采用的Nb81.7Si17.3Hf合金物理参数

    Table 1.  Physical parameters of Nb81.7Si17.3Hf alloy

    参数 符号/单位 数值 文献
    液相线温度 TL/K 2172 This work
    熔化焓 ΔHm/(J·mol–1) 32943 [24]
    熔体比热 CPL/(J·mol–1·K–1) 31.88 [24]
    (Nb)相界面能 σ0/(J·m–2) 0.28 [25]
    热扩散系数 Dt/(m2·s–1) 3.1×10–5 [22]
    液相线斜率(Si) m1/(K·%–1) 94.32 [12]
    液相线斜率(Hf) m2/(K·%–1) 5.51 [12]
    平衡分配系数(Si) k1 0.17 [12]
    平衡分配系数(Hf) k2 0.52 [12]
    溶质扩散系数(Si) D1/(m2·s–1) 1.8×10–9 [24]
    溶质扩散系数(Hf) D2/(m2·s–1) 1.2×10–9 [24]
    溶质扩散特征长度 a0/m 2.0×10–9 [24]
    下载: 导出CSV
  • [1]

    Wang J W, Chen H H, Zhang Z G, Wang B, Ma H T, Song M Q, Zhai J H, Ding L F 2021 J. Appl. Phys. 130 135104Google Scholar

    [2]

    Tsakiropoulos P 2022 Prog. Mater. Sci. 123 100714Google Scholar

    [3]

    Wang Q, Wang H P 2023 J. Phys. Condes. Matter 35 105401Google Scholar

    [4]

    Bewlay B P, Jackson M R, Zhao J C, Subramanian P R, Mendiratta M G, Lewandowski J J 2003 MRS Bull. 28 646Google Scholar

    [5]

    Guo Y L, Liang Y J, Lu W J, Jia L N, Li Z M, Peng H, Zhang H 2019 Appl. Surf. Sci. 486 22Google Scholar

    [6]

    Vellios N, Tsakiropoulos P 2007 Intermetallics 15 1518Google Scholar

    [7]

    Mendiratta M G, Dimiduk D M 1991 Scr. Metall. Mater. 25 237Google Scholar

    [8]

    Chen Y, Kolmogorov A N, Pettifor D G, Shang J X, Zhang Y 2010 Phys. Rev. B 82 184104Google Scholar

    [9]

    Sala K, Morankar S, Mitra R 2021 Metall. Mater. Trans. 52 1185Google Scholar

    [10]

    Chen Y, Shang J X, Zhang Y 2007 Phys. Rev. B 76 184204Google Scholar

    [11]

    Grammenos I, Tsakiropoulos P 2010 Intermetallics 18 242Google Scholar

    [12]

    Yang Y, Chang Y A, Zhao J C, Bewlay B P 2003 Intermetallics 11 407Google Scholar

    [13]

    Becker S, Devijver E, Molinier R, Jakse N 2020 Phys. Rev. B 102 104205Google Scholar

    [14]

    阮莹, 胡亮, 闫娜, 解文军, 魏炳波 2020 中国科学: 技术科学 50 603Google Scholar

    Ruan Y, Hu L, Yan N, Xie W J, Wei B 2020 Sci. Sin. Tech. 50 603Google Scholar

    [15]

    Warrender J M, Mathews J, Recht D, Smith M, Gradecak S, Aziz M J 2014 J. Appl. Phys. 115 163516Google Scholar

    [16]

    魏绍楼, 黄陆军, 常健, 杨尚京, 耿林 2016 物理学报 65 096101Google Scholar

    Wei S L, Huang L J, Chang J, Yang S J, Geng L 2016 Acta. Phys. Sin. 65 096101Google Scholar

    [17]

    Clopet C R, Cochrane R F, Mullis A M 2013 Appl. Phys. Lett. 102 031906Google Scholar

    [18]

    黄起森, 刘礼, 韦修勋, 李金富 2012 物理学报 61 166401Google Scholar

    Huang Q S, Liu L, Wei X X, Li J F 2012 Acta. Phys. Sin. 61 166401Google Scholar

    [19]

    Bertero G A, Hofmeister W H, Robinson M B, Bayuzick R J 1991 Metall Trans. A 22 2713Google Scholar

    [20]

    Wang Q, Zheng C H, Li M X, Hu L, Wang H P, Wei B 2023 Appl. Phys. Lett. 122 234102Google Scholar

    [21]

    Wang H P, Liao H, Hu L, Zheng C H, Chang J, Liu D N, Li M X, Zhao J F, Xie W J, Wei. B 2024 Adv. Mater. 36 2313162Google Scholar

    [22]

    Li M X, Wang H P, Lin M J, Zheng C H, Wei B 2022 Acta. Mater. 237 118157Google Scholar

    [23]

    Mohan D, Phanikumar G 2019 Phil. Trans. R. Soc. A 377 20180208.Google Scholar

    [24]

    Gale W, Totemeier T C 2004 Smithells Metals Reference Book (8th Ed.) (Amsterdam: Elsevier Butterworth-Heinemann Publications) p8-1

    [25]

    Vinet B, Magnusson L, Fredriksson H, Desre P J 2002 J. Colloid. Sci. 255 363Google Scholar

    [26]

    Wang H P, Liao H, Chang J, Liu D N, Wang Q, Li M X, Zheng C H, Hu L, Wei B 2024 Mater. Today 75 386Google Scholar

    [27]

    Sekido N, Kimura Y, Miura S, Wei F G, Mishima Y 2006 J. Alloys. Compd. 425 223Google Scholar

    [28]

    Laugier M T 1987 J. Mater. Sci. Lett. 6 897Google Scholar

    [29]

    Chen D Z, Wang Q, Chen R R, Wang S, Su Y Q, Fu H Z 2022 J. Alloys. Compd. 928 167124Google Scholar

  • [1] 金英捷, 耿德路, 林茂杰, 胡亮, 魏炳波. 静电悬浮条件下液态Zr60Ni25Al15合金的热物理性质与快速凝固机制. 物理学报, 2024, 73(8): 086401. doi: 10.7498/aps.73.20232002
    [2] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [3] 李兴欣, 李四平. 退火温度调控多层折叠石墨烯力学性能的分子动力学模拟. 物理学报, 2020, 69(19): 196102. doi: 10.7498/aps.69.20200836
    [4] 徐山森, 常健, 吴宇昊, 沙莎, 魏炳波. 液态五元Ni-Zr-Ti-Al-Cu合金快速凝固过程的高速摄影研究. 物理学报, 2019, 68(19): 196401. doi: 10.7498/aps.68.20190910
    [5] 陈治鹏, 马亚楠, 林雪玲, 潘凤春, 席丽莹, 马治, 郑富, 汪燕青, 陈焕铭. Nb掺杂-TiAl金属间化合物的电子结构与力学性能. 物理学报, 2017, 66(19): 196101. doi: 10.7498/aps.66.196101
    [6] 谷倩倩, 阮莹, 代富平. 微重力下Fe-Al-Nb合金液滴的快速凝固机理及其对显微硬度的影响. 物理学报, 2017, 66(10): 106401. doi: 10.7498/aps.66.106401
    [7] 朱海哲, 阮莹, 谷倩倩, 闫娜, 代富平. 落管中Ni-Fe-Ti合金的快速凝固机理及其磁学性能. 物理学报, 2017, 66(13): 138101. doi: 10.7498/aps.66.138101
    [8] 王海燕, 胡前库, 杨文朋, 李旭升. 金属元素掺杂对TiAl合金力学性能的影响. 物理学报, 2016, 65(7): 077101. doi: 10.7498/aps.65.077101
    [9] 夏瑱超, 王伟丽, 罗盛宝, 魏炳波. 三元等原子比Fe33.3Cu33.3Sn33.3合金的快速凝固机理与室温组织磁性研究. 物理学报, 2016, 65(15): 158101. doi: 10.7498/aps.65.158101
    [10] 曹永青, 林鑫, 汪志太, 王理林, 黄卫东. 液氮冷却条件下激光快速熔凝Ni-28 wt%Sn合金组织演变. 物理学报, 2015, 64(10): 108103. doi: 10.7498/aps.64.108103
    [11] 马冰洋, 张安明, 尚海龙, 孙士阳, 李戈扬. 共溅射Al-Zr合金薄膜的非晶化及其力学性能. 物理学报, 2014, 63(13): 136801. doi: 10.7498/aps.63.136801
    [12] 王小娟, 阮莹, 洪振宇. Al-Cu-Ge合金的热物理性质与快速凝固规律研究. 物理学报, 2014, 63(9): 098101. doi: 10.7498/aps.63.098101
    [13] 鲁晓宇, 廖霜, 阮莹, 代富平. 快速凝固Ti-Cu-Fe合金的相组成与组织演变规律. 物理学报, 2012, 61(21): 216102. doi: 10.7498/aps.61.216102
    [14] 闫娜, 王伟丽, 代富平, 魏炳波. 三元Co-Cu-Pb偏晶合金的快速凝固组织形成规律研究. 物理学报, 2011, 60(3): 036402. doi: 10.7498/aps.60.036402
    [15] 李志强, 王伟丽, 翟薇, 魏炳波. 快速凝固Fe62.1Sn27.9Si10合金的分层组织和偏晶胞形成机理. 物理学报, 2011, 60(10): 108101. doi: 10.7498/aps.60.108101
    [16] 徐锦锋, 范于芳, 陈娓, 翟秋亚. 快速凝固Cu-Pb过偏晶合金的性能表征. 物理学报, 2009, 58(1): 644-649. doi: 10.7498/aps.58.644
    [17] 殷涵玉, 鲁晓宇. 深过冷Cu60Sn30Pb10偏晶合金的快速凝固. 物理学报, 2008, 57(7): 4341-4346. doi: 10.7498/aps.57.4341
    [18] 翟秋亚, 杨 扬, 徐锦锋, 郭学锋. 快速凝固Cu-Sn亚包晶合金的电阻率及力学性能. 物理学报, 2007, 56(10): 6118-6123. doi: 10.7498/aps.56.6118
    [19] 徐锦锋, 魏炳波. 快速凝固Co-Cu包晶合金的电学性能. 物理学报, 2005, 54(7): 3444-3450. doi: 10.7498/aps.54.3444
    [20] 徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律. 物理学报, 2004, 53(6): 1909-1915. doi: 10.7498/aps.53.1909
计量
  • 文章访问数:  361
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-08-27
  • 修回日期:  2024-12-23
  • 上网日期:  2024-12-26

/

返回文章
返回