-
金刚石氮-空位(NV)色心在室温下稳定性好, 电子自旋相干时间长, 能被激光和微波操控, 是量子探测领域最具潜力的结构. 本研究采用微波等离子化学气相沉积法(MPCVD)制备具有较高氮含量的金刚石单晶, 以构建高浓度NV色心. 通过在前驱体气体中掺杂不同含量的氮原子, 解决了高氮条件下长时间生长金刚石单晶出现的诸多问题, 制备氮含量约为0.205, 5, 8, 11, 15, 36和54 ppm (1 ppm = 10–6)的高氮金刚石单晶. 初步确定了前驱体气体中氮含量与进入到金刚石单晶晶格中氮含量的关系平均约为11, 氮原子在金刚石单晶中主要以聚集态氮和单个替位N+形式存在. 对高氮金刚石单晶进行电子辐照, 显著提升了金刚石NV色心浓度, 并对辐照后NV色心材料的磁探测性能进行验证.Diamond nitrogen vacancy (NV) color centers have good stability at room temperature and long electron spin coherence time, and can be manipulated by lasers and microwaves, thereby becoming the most promising structure in the field of quantum detection. Within a certain range, the higher the concentration of NV color centers, the higher the sensitivity of detecting physical quantities is. Therefore, it is necessary to dope sufficient nitrogen atoms into diamond single crystals to form high-concentration NV color centers. In this study, diamond single crystals with different nitrogen content are prepared by microwave plasma chemical vapor deposition (MPCVD) to construct high-concentration NV color centers. By doping different amounts of nitrogen atoms into the precursor gas, many problems encountered during long-time growth of diamond single crystals under high nitrogen conditions are solved. Diamond single crystals with nitrogen content of about 0.205, 5, 8, 11, 15, 36, and 54 ppm (1 ppm = 10–6) are prepared. As the nitrogen content increases, the width of the step flow on the surface of the diamond single crystal gradually widens, eventually the step flow gradually disappears and the surface becomes smooth. Under the experimental conditions in this study, it is preliminarily determined that the average ratio of the nitrogen content in the precursor gas to the nitrogen atom content introduced into the diamond single crystal lattice is about 11. Fourier transform infrared spectroscopy shows that as the nitrogen content inside the CVD diamond single crystal increases, the density of vacancy defects also increases. Therefore, the color of CVD high nitrogen diamond single crystals ranges from light brown to brownish black. Compared with HPHT diamond single crystal, the CVD high nitrogen diamond single crystal has a weak intensity of absorption peak at 1130 cm–1 and no absorption peak at 1280 cm–1. Three obvious nitrogen-related absorption peaks at 1371, 1353, and 1332 cm–1 of the CVD diamond single crystal are displayed. Nitrogen atoms mainly exist in the form of aggregated nitrogen and single substitutional N+ in diamond single crystals, rather than in the form of C-defect. The PL spectrum results show that defects such as vacancies inside the diamond single crystal with nitrogen content of 54 ppm are significantly increased after electron irradiation, leading to a remarkable increase in the concentration of NV color centers. The magnetic detection performance of the NV color center material after irradiation is verified, and the fluorescence intensity is uniformly distributed in the sample surface. The diamond single crystal with nitrogen content of 54 ppm has good microwave spin manipulation, and its longitudinal relaxation time is about 3.37 ms.
-
Keywords:
- diamond single crystal /
- high content of nitrogen /
- nitrogen vacancy color center /
- Fourier transform infrared spectrum /
- magnetic detection
[1] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar
Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar
[2] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar
[3] Acosta V, Hemmer P 2013 MRS Bull. 38 127Google Scholar
[4] 吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar
Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond & Abrasives Engineering 40 42Google Scholar
[5] 刘勇, 林豪彬, 张少春, 董杨, 陈向东, 孙方稳 2023 激光与光电子学进展 60 11Google Scholar
Liu Y, Lin H B, Zhang S C, Dong Y, Chen X D, Sun F W 2023 Laser Optoelectron. P. 60 11Google Scholar
[6] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar
Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar
[7] Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar
[8] Gao X D, Yu C, Zhang S C, Lin H B, Guo J C, Ma M Y, Feng Z H, Sun F W 2023 Diam. Relat. Mater. 139 110348Google Scholar
[9] 李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊 2021 物理学报 70 147601Google Scholar
Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J, Liu J 2021 Acta Phys. Sin. 70 147601Google Scholar
[10] Karki P B, Timalsina R, Dowran M, Aregbesola A E, Laraoui A, Ambal K 2023 Diam. Relat. Mater. 140 110472Google Scholar
[11] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 128101Google Scholar
Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 128101Google Scholar
[12] 李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984Google Scholar
Li Y, Feng Y G, Jin H, Jia X P, Ma H A 2015 J. Synthetic Cryst. 44 2984Google Scholar
[13] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安 2016 物理学报 65 118103Google Scholar
Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016 Acta Phys. Sin. 65 118103Google Scholar
[14] Kanda H, Akaishi M, Yamaoka S 1999 Diam. Relat. Mater. 8 1441Google Scholar
[15] Zaitsev A M, Kazuchits N M, Kazuchits V N, Moe K S, Rusetsky M S, Korolik O V, Kitajima K, Butler J E, Wang W 2020 Diam. Relat. Mater. 105 107794Google Scholar
[16] 李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar
Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar
[17] 刘志杰, 张卫, 张剑云, 万永中, 王季陶 1999 无机材料学报 14 114Google Scholar
Liu Z J, Zhang W, Zhang J Y, Wan Y Z, Wang J T 1999 J. Inor. mater. 14 114Google Scholar
[18] 李建军, 范澄兴, 程佑法, 刘雪松, 王岳, 山广祺, 李婷, 李桂华, 丁秀云, 赵潇雪 2021 人工晶体学报 50 0158Google Scholar
Li J J, Fan C X, Cheng Y F, Liu X S, Wang Y, Shan G Q, Li T, Li G H, Ding X Y, Zhao X X 2021 J. Synthetic Cryst. 50 0158Google Scholar
[19] Jani M, Mrózek M, Nowakowska A M, Leszczenko P, Gawlik W, Wojciechowski A M 2023 Phys. Status Solidi (a) 220 2200299Google Scholar
[20] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039Google Scholar
Liang Z Z, Liang J Q, Zhen N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039Google Scholar
[21] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101Google Scholar
Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101Google Scholar
[22] 吕青, 焦永鑫, 葛跃进, 肖丙建, 褚志远, 刘淑桢 2021 地球学报 42 895Google Scholar
Lv Q, Jiao Y X, Ge Y J, Xiao B J, Chu Z Y, Liu S Z, 2021 J. Acta Geol. Sin. 42 895Google Scholar
[23] Howell C, O’Neill C J, Grant K J, Griffin W L, O’Reilly S Y, Pearson N J, Stern R A, Stachel T 2012 Contrib. Mineral Petr. 164 1011Google Scholar
[24] Lawson S C, Fisher D, Hunt D C, Newton M E 1998 J. Phys. Condens. Matter. 10 6171Google Scholar
[25] Vins V, Yelisseyev A, Terentyev S, Nosukhin S 2021 Diam. Relat. Mater. 118 108511Google Scholar
[26] Jones R 2009 Diam. Relat. Mater. 18 820Google Scholar
[27] 李荣斌 2007 物理学报 56 395Google Scholar
Li R B 2007 Acta Phys. Sin. 56 395Google Scholar
[28] Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar
-
图 2 不同氮含量金刚石单晶表面形貌和实物图 (a) 1号; (b) 2号; (c) 3号; (d) 4号; (e) 5号; (f) 6号; (g) 7号; (h)样品实物图
Fig. 2. Surface morphologies and pictures of different nitrogen content diamond single crystals: (a) Sample 1; (b) Sample 2; (c) Sample 3; (d) Sample 4; (e) Sample 5; (f) Sample 6; (g) Sample 7; (h) pictures of different samples.
图 8 (a)测试示意图; (b)荧光Mapping; (c)不同微波功率下的ODMR曲线; (d)施加偏置磁场后的ODMR曲线; (e)拉比振荡曲线; (f)纵向弛豫时间
Fig. 8. (a) Test schematic diagram; (b) fluorescence Mapping; (c) ODMR curves at different microwave powers; (d) ODMR curve after applying a biased magnetic field; (e) Rabi oscillation curve; (f) longitudinal relaxation time.
表 1 生长工艺参数(1 Torr = 1.33 × 102 Pa)
Table 1. Growth process parameters (1 Torr = 1.33 × 102 Pa).
样品编号 CH4/sccm H2/sccm N 掺杂量/ppm O2/sccm 微波功率/kW 生长压力/Torr 生长温度/℃ 生长时间/h 1 9 300 3 0.8 5 180 880 100 2 9 300 60 0.8 5 180 880 100 3 9 300 90 0.8 5 180 880 100 4 9 300 120 0.8 5 180 880 100 5 9 300 150 0.8 5 180 880 100 6 9 300 350 0.8 5 180 880 100 7 9 300 480 0.8 5 180 880 100 -
[1] 李路思, 李红蕙, 周黎黎, 杨炙盛, 艾清 2017 物理学报 66 230601Google Scholar
Li L S, Li H H, Zhou L L, Yang Z S, Ai Q 2017 Acta Phys. Sin. 66 230601Google Scholar
[2] Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J, Hollenberg L C L 2013 Phys. Rep. 528 1Google Scholar
[3] Acosta V, Hemmer P 2013 MRS Bull. 38 127Google Scholar
[4] 吴晓磊, 徐帅, 赵延军, 吴啸, 常豪锋, 郭兴星 2020 金刚石与磨料磨具工程 40 42Google Scholar
Wu X L, Xu S, Zhao Y J, Wu X, Chang H F, Guo X X 2020 Diamond & Abrasives Engineering 40 42Google Scholar
[5] 刘勇, 林豪彬, 张少春, 董杨, 陈向东, 孙方稳 2023 激光与光电子学进展 60 11Google Scholar
Liu Y, Lin H B, Zhang S C, Dong Y, Chen X D, Sun F W 2023 Laser Optoelectron. P. 60 11Google Scholar
[6] 王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar
Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar
[7] Wang Z C, Kong F, Zhao P J, Huang Z H, Yu P, Wang Y, Shi F Z, Du J F 2022 Sci. Adv. 8 eabq8158Google Scholar
[8] Gao X D, Yu C, Zhang S C, Lin H B, Guo J C, Ma M Y, Feng Z H, Sun F W 2023 Diam. Relat. Mater. 139 110348Google Scholar
[9] 李中豪, 王天宇, 郭琦, 郭浩, 温焕飞, 唐军, 刘俊 2021 物理学报 70 147601Google Scholar
Li Z H, Wang T Y, Guo Q, Guo H, Wen H F, Tang J, Liu J 2021 Acta Phys. Sin. 70 147601Google Scholar
[10] Karki P B, Timalsina R, Dowran M, Aregbesola A E, Laraoui A, Ambal K 2023 Diam. Relat. Mater. 140 110472Google Scholar
[11] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安 2015 物理学报 64 128101Google Scholar
Fang C, Jia X P, Yan B M, Chen N, Li Y D, Chen L C, Guo L S, Ma H A 2015 Acta Phys. Sin. 64 128101Google Scholar
[12] 李勇, 冯云光, 金慧, 贾晓鹏, 马红安 2015 人工晶体学报 44 2984Google Scholar
Li Y, Feng Y G, Jin H, Jia X P, Ma H A 2015 J. Synthetic Cryst. 44 2984Google Scholar
[13] 李勇, 李宗宝, 宋谋胜, 王应, 贾晓鹏, 马红安 2016 物理学报 65 118103Google Scholar
Li Y, Li Z B, Song M S, Wang Y, Jia X P, Ma H A 2016 Acta Phys. Sin. 65 118103Google Scholar
[14] Kanda H, Akaishi M, Yamaoka S 1999 Diam. Relat. Mater. 8 1441Google Scholar
[15] Zaitsev A M, Kazuchits N M, Kazuchits V N, Moe K S, Rusetsky M S, Korolik O V, Kitajima K, Butler J E, Wang W 2020 Diam. Relat. Mater. 105 107794Google Scholar
[16] 李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar
Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar
[17] 刘志杰, 张卫, 张剑云, 万永中, 王季陶 1999 无机材料学报 14 114Google Scholar
Liu Z J, Zhang W, Zhang J Y, Wan Y Z, Wang J T 1999 J. Inor. mater. 14 114Google Scholar
[18] 李建军, 范澄兴, 程佑法, 刘雪松, 王岳, 山广祺, 李婷, 李桂华, 丁秀云, 赵潇雪 2021 人工晶体学报 50 0158Google Scholar
Li J J, Fan C X, Cheng Y F, Liu X S, Wang Y, Shan G Q, Li T, Li G H, Ding X Y, Zhao X X 2021 J. Synthetic Cryst. 50 0158Google Scholar
[19] Jani M, Mrózek M, Nowakowska A M, Leszczenko P, Gawlik W, Wojciechowski A M 2023 Phys. Status Solidi (a) 220 2200299Google Scholar
[20] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊 2009 物理学报 58 8039Google Scholar
Liang Z Z, Liang J Q, Zhen N, Jia X P, Li G J 2009 Acta Phys. Sin. 58 8039Google Scholar
[21] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安 2014 物理学报 63 048101Google Scholar
Yan B M, Jia X P, Qin J M, Sun S S, Zhou Z X, Fang C, Ma H A 2014 Acta Phys. Sin. 63 048101Google Scholar
[22] 吕青, 焦永鑫, 葛跃进, 肖丙建, 褚志远, 刘淑桢 2021 地球学报 42 895Google Scholar
Lv Q, Jiao Y X, Ge Y J, Xiao B J, Chu Z Y, Liu S Z, 2021 J. Acta Geol. Sin. 42 895Google Scholar
[23] Howell C, O’Neill C J, Grant K J, Griffin W L, O’Reilly S Y, Pearson N J, Stern R A, Stachel T 2012 Contrib. Mineral Petr. 164 1011Google Scholar
[24] Lawson S C, Fisher D, Hunt D C, Newton M E 1998 J. Phys. Condens. Matter. 10 6171Google Scholar
[25] Vins V, Yelisseyev A, Terentyev S, Nosukhin S 2021 Diam. Relat. Mater. 118 108511Google Scholar
[26] Jones R 2009 Diam. Relat. Mater. 18 820Google Scholar
[27] 李荣斌 2007 物理学报 56 395Google Scholar
Li R B 2007 Acta Phys. Sin. 56 395Google Scholar
[28] Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar
计量
- 文章访问数: 439
- PDF下载量: 62
- 被引次数: 0