搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于铁磁扭摆振子的磁场测量及其应用

武列列 任益充 薛飞

引用本文:
Citation:

基于铁磁扭摆振子的磁场测量及其应用

武列列, 任益充, 薛飞
cstr: 32037.14.aps.74.20241538

Ferromagnetic torsional oscillator based magnetic field measurement and its applications

WU Lielie, REN Yichong, XUE Fei
cstr: 32037.14.aps.74.20241538
PDF
HTML
导出引用
  • 得益于铁磁材料极高自旋密度、强自旋-晶格相互作用及力学系统对信号的谐振放大, 铁磁-力学系统在磁场精密测量领域展现出巨大潜力. 本文研究了处于均匀磁场中的铁磁体所构成的铁磁扭摆振子(ferromagnetic torsional oscillator, FMTO)的力学特性, 分析了其作为磁传感器的探测性能; 研究表明, FMTO磁传感器在基础噪声的影响下仍拥有超高的磁灵敏度, 能够超越能量分辨率极限(energy resolution limit, ERL)$2—4$个量级. 随后针对FMTO磁传感器在新相互作用探测领域的应用进行了探讨, 研究指出FMTO磁传感器测量的新相互作用耦合常数的下限领先ERL磁传感器5个量级, 并超越现有实验结果$2—9$个量级.
    The ferromagnetic-mechanical system can be used as a magnetometer by monitoring its mechanical response to magnetic signals. This system can exceed the energy resolution limit (ERL) in terms of sensitivity, due to the ultra-high spin density and strong spin-lattice interactions inherent in ferromagnetic materials. A levitated ferromagnetic-mechanical system can further enhance its quality factor by eliminating clamp dissipation, thus achieving higher magnetic sensitivity. In this work, a magnetometer is proposed based on a magnetically levitated ferromagnetic torsional oscillator (FMTO), which transforms magnetic signals into torque to drive the oscillator. An optical method is then used to measure the torsional motion and extract the magnetic signal. The resonance frequency of this FMTO system can be controlled by modifying the bias field, thus providing enhanced flexibility and control.By analyzing the influence of fundamental noise, including thermal noise and quantum measurement noise (SQL), the relationship between the magnetic noise floor of the FMTO made of NdFeB and its radius is obtained. The SQL is much lower than both thermal noise and ERL, indicating that thermal noise is a dominant factor affecting the magnetic sensitivity of the FMTO. The magnetic sensitivity of the FMTO system at $4.2\ \rm{K}$ exceeds the ERL by three orders of magnitude, confirming the significant potential application of the FMTO system in high-precision magnetic measurements.Searching for exotic interactions is one of the most promising applications of ultra-high sensitivity magnetic sensors. It is typically achieved by measuring pseudo-magnetic fields. The accuracy of detecting exotic interactions depends on two main factors: the magnetometer’s sensitivity and the distance between the sensor and the source. The ERL presents challenges in meeting both of these factors simultaneously. Improving magnetic sensitivity typically increases the radius of the sensor, which in turn increases the distance between the sensor and the source, limiting the accuracy of detecting exotic interactions. Thus, ERL limits the accuracy of exotic interaction detection, while the FMTO, with its excellent sensitivity, is expected to significantly improve the detection of exotic interactions.If there is an exotic interaction, the BGO nuclei oscillating perpendicular to the paper will generate a pseudo-magnetic field along the vertical direction. This pseudo-magnetic field will induce torsional motion in the FMTO. The lower limit of the coupling constant for the new interaction is determined by measuring the torsional motion. Existing experiments have approached the ERL at Compton wavelengths on millimeter and micrometer scales. However, the FMTO system, with a bias field of 1 μT, exceeds the ERL by up to five orders of magnitude in sub-centimeter Compton wavelength and the existing experimental results by two to nine orders of magnitude. These results highlight the potential advantages of FMTO-based magnetometers in probing exotic interactions.All in all, in this work, a magnetometer configuration is proposed based on a levitated FMTO and its mechanical response, fundamental noise, magnetic performance, and applications in fundamental research are analyzed comprehensively.
      Corresponding author: REN Yichong, renyichong@outlook.com ; XUE Fei, xfei.xue@hfut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12150011).
    [1]

    Xia H, Ben-Amar Baranga A, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104Google Scholar

    [2]

    Harada S, Sasada I, Hang F 2015 Electron. Commun. Jpn. 98 20Google Scholar

    [3]

    Dolabdjian C, Saez S, Reyes Toledo A, Robbes D 1998 Rev. Sci. Instrum. 69 3678Google Scholar

    [4]

    Germain-Jones D T 1957 J. Sci. Instrum. 34 1Google Scholar

    [5]

    Mohanty I, Nagendran R, Arasu A V T, Baskaran R, Mani A 2018 Meas. Sci. Technol. 29 105601Google Scholar

    [6]

    Nabighian M N, Grauch V J S, Hansen R O, et al. 2005 Geophysics 70 33Google Scholar

    [7]

    赵龙, 颜廷君 2013 物理学报 62 067702Google Scholar

    Zhao L, Yan T J 2013 Acta Phys. Sin. 62 067702Google Scholar

    [8]

    Pedersen L W, Merenyi L 2016 J. Ind. Geophys. Union. Special Volume-2 30

    [9]

    Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 17 1402Google Scholar

    [10]

    Wang Y H, Huang Y, Guo C, et al. 2023 Sci. Adv. 9 eade0353Google Scholar

    [11]

    Wang Y H, Su H W, Jiang M, et al. 2022 Phys. Rev. Lett. 129 051801Google Scholar

    [12]

    Su H W, Wang Y H, Jiang M, Ji W, Fadeev P, Hu D D, Peng X H, Budker D 2021 Sci. Adv. 7 eabi9535Google Scholar

    [13]

    Braginsky V B 1968 Sov. Phys. Jetp. 26 831

    [14]

    Braginsky V B, Vorontsov Y I 1975 Sov. Phys. Usp. 17 644Google Scholar

    [15]

    Mitchell M W, Palacios Alvarez S 2020 Rev. Mod. Phys. 92 021001Google Scholar

    [16]

    Vinante A, Timberlake C, Budker D, Kimball D F J, Sushkov A O, Ulbricht H 2021 Phys. Rev. Lett. 127 070801Google Scholar

    [17]

    Vinante A, Falferi P, Gasbarri G, Setter A, Timberlake C, Ulbricht H 2020 Phys. Rev. Appl. 13 064027Google Scholar

    [18]

    Jackson Kimball D F, Sushkov A O, Budker D 2016 Phys. Rev. Lett. 116 190801Google Scholar

    [19]

    Fadeev P, Wang T, Band Y B, Budker D, Graham P W, Sushkov A O, Kimball D F J 2021 Phys. Rev. D 103 044056Google Scholar

    [20]

    Fadeev P, Timberlake C, Wang T, et al. 2021 Quantum. Sci. Technol. 6 024006Google Scholar

    [21]

    张莉, 刘立, 曹力 2010 物理学报 59 1494Google Scholar

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494Google Scholar

    [22]

    Slezak B R, Lewandowski C W, Hsu J F, D Urso B 2018 New J. Phys. 20 063028Google Scholar

    [23]

    Timberlake C, Gasbarri G, Vinante A, Setter A, Ulbricht H 2019 Appl. Phys. Lett. 115 224101Google Scholar

    [24]

    Zheng D, Leng Y C, Kong X, et al. 2020 Phys. Rev. Res. 2 013057Google Scholar

    [25]

    Gieseler J, Novotny L, Quidant R 2013 Nat. Phys. 9 806Google Scholar

    [26]

    Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S, Barker P F 2015 Phys. Rev. Lett. 114 123602Google Scholar

    [27]

    Wang T, Lourette S, O’Kelley S R, et al. 2019 Phys. Rev. Appl. 11 044041Google Scholar

    [28]

    Schloss J M, Barry J F, Turner M J, Walsworth R L 2018 Phys. Rev. Appl. 10 034044Google Scholar

    [29]

    Callen H B, Welton T A 1951 Phys. Rev. 83 34Google Scholar

    [30]

    Nimmrichter S, Hornberger K, Hammerer K 2014 Phys. Rev. Lett. 113 020405Google Scholar

    [31]

    Losby J E, Sauer V T K, Freeman M R 2018 J. Phys. D: Appl. Phys. 51 483001Google Scholar

    [32]

    Leslie T M, Weisman E, Khatiwada R, Long J C 2014 Phys. Rev. D 89 114022Google Scholar

    [33]

    Wu L H, Lin S C, Kong X, Wang M Q, Zhou J W, Duan C K, Huang P, Zhang L, Du J F 2023 PNAS 120 e2302145120Google Scholar

    [34]

    Ding J H, Wang J B, Zhou X, et al. 2020 Phys. Rev. Lett. 124 161801Google Scholar

    [35]

    Wu D G, Liang H, Jiao M, Cai Y F, Duan C K, Wang Y, Rong X, Du J F 2023 Phys. Rev. Lett. 131 071801Google Scholar

    [36]

    Piegsa F M, Pignol G 2012 Phys. Rev. Lett. 108 181801Google Scholar

    [37]

    Kim Y J, Chu P H, Savukov I 2018 Phys. Rev. Lett. 121 091802Google Scholar

  • 图 1  铁磁球体在磁场中的运动模式: 铁磁扭摆振子(左图)和铁磁陀螺(右图)

    Fig. 1.  Patterns of ferromagnetic magnets in a magnetic field: Ferromagnetic orsion pendulum oscillator (left panel) and ferromagnetic gyroscope (right panel).

    图 2  铁磁半径及外磁场对运动模式的影响

    Fig. 2.  Ferromagnets’ motion pattern decided by external field and its radius.

    图 3  (a) FMTO磁噪声与测量频率关系: ERL噪声(蓝虚线), SQL噪声(橙虚线), $ 4.2\ {\rm{K}} $热噪声(红实线)与$ 50\ {\rm{mK}} $热噪声(粉实线); (b) FMTO磁噪声本底与半径关系: ERL噪声(蓝虚线), 共振时SQL噪声(橙虚线), $ 4.2\ {\rm{K}} $ FMTO热噪声极限(红实线), 特定磁场下$ 4.2\ {\rm{K}} $ FMTO热噪声(粉实线)

    Fig. 3.  (a) Magnetic noise versus frequency for FMTO: ERL (blue dashed), SQL (orange dashed), Thermal at $ 4.2\ {\rm{K}} $ (red solid) and at $ 50\ {\rm{m K}} $ (pink solid); (b) magnetic noise versus radius for FMTO: ERL (blue dashed), resonant SQL (orange dashed), Thermal limit at $ 4.2\ {\rm{K}} $ (red solid) and with special bias field (pink solid).

    图 4  (a) 新相互作用探测示意图; (b) 新相互作用探测: I[34], II[33], III[35], IV[36], V[37]均为实验结果, VI和VII分别对应FMTO和ERL固定间距下探测结果, VIII和IX分别代表FMTO和ERL的最优结果

    Fig. 4.  (a) Schematic of the detection of exotic interactions; (b) exotic interactions probes: I[34], II[33], III[35], IV[36], V[37] all are experimental results; VI and VII are the results acheived by FMTO and ERL under fixed pitch respectively, VIII and IX are the optimal results of FMTO and ERL respectively.

  • [1]

    Xia H, Ben-Amar Baranga A, Hoffman D, Romalis M V 2006 Appl. Phys. Lett. 89 211104Google Scholar

    [2]

    Harada S, Sasada I, Hang F 2015 Electron. Commun. Jpn. 98 20Google Scholar

    [3]

    Dolabdjian C, Saez S, Reyes Toledo A, Robbes D 1998 Rev. Sci. Instrum. 69 3678Google Scholar

    [4]

    Germain-Jones D T 1957 J. Sci. Instrum. 34 1Google Scholar

    [5]

    Mohanty I, Nagendran R, Arasu A V T, Baskaran R, Mani A 2018 Meas. Sci. Technol. 29 105601Google Scholar

    [6]

    Nabighian M N, Grauch V J S, Hansen R O, et al. 2005 Geophysics 70 33Google Scholar

    [7]

    赵龙, 颜廷君 2013 物理学报 62 067702Google Scholar

    Zhao L, Yan T J 2013 Acta Phys. Sin. 62 067702Google Scholar

    [8]

    Pedersen L W, Merenyi L 2016 J. Ind. Geophys. Union. Special Volume-2 30

    [9]

    Jiang M, Su H W, Garcon A, Peng X H, Budker D 2021 Nat. Phys. 17 1402Google Scholar

    [10]

    Wang Y H, Huang Y, Guo C, et al. 2023 Sci. Adv. 9 eade0353Google Scholar

    [11]

    Wang Y H, Su H W, Jiang M, et al. 2022 Phys. Rev. Lett. 129 051801Google Scholar

    [12]

    Su H W, Wang Y H, Jiang M, Ji W, Fadeev P, Hu D D, Peng X H, Budker D 2021 Sci. Adv. 7 eabi9535Google Scholar

    [13]

    Braginsky V B 1968 Sov. Phys. Jetp. 26 831

    [14]

    Braginsky V B, Vorontsov Y I 1975 Sov. Phys. Usp. 17 644Google Scholar

    [15]

    Mitchell M W, Palacios Alvarez S 2020 Rev. Mod. Phys. 92 021001Google Scholar

    [16]

    Vinante A, Timberlake C, Budker D, Kimball D F J, Sushkov A O, Ulbricht H 2021 Phys. Rev. Lett. 127 070801Google Scholar

    [17]

    Vinante A, Falferi P, Gasbarri G, Setter A, Timberlake C, Ulbricht H 2020 Phys. Rev. Appl. 13 064027Google Scholar

    [18]

    Jackson Kimball D F, Sushkov A O, Budker D 2016 Phys. Rev. Lett. 116 190801Google Scholar

    [19]

    Fadeev P, Wang T, Band Y B, Budker D, Graham P W, Sushkov A O, Kimball D F J 2021 Phys. Rev. D 103 044056Google Scholar

    [20]

    Fadeev P, Timberlake C, Wang T, et al. 2021 Quantum. Sci. Technol. 6 024006Google Scholar

    [21]

    张莉, 刘立, 曹力 2010 物理学报 59 1494Google Scholar

    Zhang L, Liu L, Cao L 2010 Acta Phys. Sin. 59 1494Google Scholar

    [22]

    Slezak B R, Lewandowski C W, Hsu J F, D Urso B 2018 New J. Phys. 20 063028Google Scholar

    [23]

    Timberlake C, Gasbarri G, Vinante A, Setter A, Ulbricht H 2019 Appl. Phys. Lett. 115 224101Google Scholar

    [24]

    Zheng D, Leng Y C, Kong X, et al. 2020 Phys. Rev. Res. 2 013057Google Scholar

    [25]

    Gieseler J, Novotny L, Quidant R 2013 Nat. Phys. 9 806Google Scholar

    [26]

    Millen J, Fonseca P Z G, Mavrogordatos T, Monteiro T S, Barker P F 2015 Phys. Rev. Lett. 114 123602Google Scholar

    [27]

    Wang T, Lourette S, O’Kelley S R, et al. 2019 Phys. Rev. Appl. 11 044041Google Scholar

    [28]

    Schloss J M, Barry J F, Turner M J, Walsworth R L 2018 Phys. Rev. Appl. 10 034044Google Scholar

    [29]

    Callen H B, Welton T A 1951 Phys. Rev. 83 34Google Scholar

    [30]

    Nimmrichter S, Hornberger K, Hammerer K 2014 Phys. Rev. Lett. 113 020405Google Scholar

    [31]

    Losby J E, Sauer V T K, Freeman M R 2018 J. Phys. D: Appl. Phys. 51 483001Google Scholar

    [32]

    Leslie T M, Weisman E, Khatiwada R, Long J C 2014 Phys. Rev. D 89 114022Google Scholar

    [33]

    Wu L H, Lin S C, Kong X, Wang M Q, Zhou J W, Duan C K, Huang P, Zhang L, Du J F 2023 PNAS 120 e2302145120Google Scholar

    [34]

    Ding J H, Wang J B, Zhou X, et al. 2020 Phys. Rev. Lett. 124 161801Google Scholar

    [35]

    Wu D G, Liang H, Jiao M, Cai Y F, Duan C K, Wang Y, Rong X, Du J F 2023 Phys. Rev. Lett. 131 071801Google Scholar

    [36]

    Piegsa F M, Pignol G 2012 Phys. Rev. Lett. 108 181801Google Scholar

    [37]

    Kim Y J, Chu P H, Savukov I 2018 Phys. Rev. Lett. 121 091802Google Scholar

  • [1] 温涛, 马宇航, 王德全, 谌浩然, 李艳芳, 许洋, 王志广. 基于巨磁阻抗效应的双模态型低噪声大量程磁传感器. 物理学报, 2025, 74(3): 038501. doi: 10.7498/aps.74.20241498
    [2] 屠秉晟. 少电子离子束缚态电子g因子精密测量. 物理学报, 2024, 73(20): 203103. doi: 10.7498/aps.73.20240683
    [3] 郭忠凯, 李永刚, 于博丞, 周世超, 孟庆宇, 陆鑫鑫, 黄一帆, 刘贵鹏, 陆俊. 锁相放大器的研究进展. 物理学报, 2023, 72(22): 224206. doi: 10.7498/aps.72.20230579
    [4] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [5] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [6] 陈娇娇, 孙羽, 温金录, 胡水明. 稳定的高亮度低速亚稳态氦原子束流. 物理学报, 2021, 70(13): 133201. doi: 10.7498/aps.70.20201833
    [7] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [8] 赵天择, 杨苏辉, 李坤, 高彦泽, 王欣, 张金英, 李卓, 赵一鸣, 刘宇哲. 频域反射法光纤延时精密测量. 物理学报, 2021, 70(8): 084204. doi: 10.7498/aps.70.20201075
    [9] 高朋林, 郑皓, 孙光爱. 中子星对自旋相关轴矢量新相互作用的约束. 物理学报, 2019, 68(18): 181102. doi: 10.7498/aps.68.20190477
    [10] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [11] 管桦, 黄垚, 李承斌, 高克林. 高准确度的钙离子光频标. 物理学报, 2018, 67(16): 164202. doi: 10.7498/aps.67.20180876
    [12] 谭文海, 王建波, 邵成刚, 涂良成, 杨山清, 罗鹏顺, 罗俊. 近距离牛顿反平方定律实验检验进展. 物理学报, 2018, 67(16): 160401. doi: 10.7498/aps.67.20180636
    [13] 刘建平, 邬俊飞, 黎卿, 薛超, 毛德凯, 杨山清, 邵成刚, 涂良成, 胡忠坤, 罗俊. 万有引力常数G精确测量实验进展. 物理学报, 2018, 67(16): 160603. doi: 10.7498/aps.67.20181381
    [14] 王磊, 郭浩, 陈宇雷, 伍大锦, 赵锐, 刘文耀, 李春明, 夏美晶, 赵彬彬, 朱强, 唐军, 刘俊. 基于金刚石色心自旋磁共振效应的微位移测量方法. 物理学报, 2018, 67(4): 047601. doi: 10.7498/aps.67.20171914
    [15] 彭世杰, 刘颖, 马文超, 石发展, 杜江峰. 基于金刚石氮-空位色心的精密磁测量. 物理学报, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [16] 穆秀丽, 李传亮, 邓伦华, 汪海玲. 用于α和μ常数变化测量的碘离子光谱研究. 物理学报, 2017, 66(23): 233301. doi: 10.7498/aps.66.233301
    [17] 于振涛, 吕俊伟, 毕波, 周静. 四面体磁梯度张量系统的载体磁干扰补偿方法. 物理学报, 2014, 63(11): 110702. doi: 10.7498/aps.63.110702
    [18] 王金涛, 刘子勇. 基于静力悬浮原理的单晶硅球间微量密度差异精密测量方法研究. 物理学报, 2013, 62(3): 037702. doi: 10.7498/aps.62.037702
    [19] 成泰民, 罗宏超, 李 林. 有限温度下光频支声子-磁振子相互作用对磁振子寿命的影响. 物理学报, 2008, 57(10): 6531-6539. doi: 10.7498/aps.57.6531
    [20] 史庆藩, 李粮生, 张 梅. “禁忌”3-磁振子相互作用哈密顿项的有效性分析. 物理学报, 2004, 53(11): 3916-3919. doi: 10.7498/aps.53.3916
计量
  • 文章访问数:  266
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-11-01
  • 修回日期:  2024-12-10
  • 上网日期:  2024-12-17

/

返回文章
返回