搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双沟槽SiC MOSFET总剂量效应研究

朱文璐 郭红霞 李洋帆 马武英 张凤祁 白如雪 钟向丽 李济芳 曹彦辉 琚安安

引用本文:
Citation:

双沟槽SiC MOSFET总剂量效应研究

朱文璐, 郭红霞, 李洋帆, 马武英, 张凤祁, 白如雪, 钟向丽, 李济芳, 曹彦辉, 琚安安

Research on Total Ionizing Dose Effect of double-trench SiC MOSFET

Zhu Wen-Lu, Guo Hong-Xia, Li Yang-Fan, Ma Wu-Ying, Zhang Feng-Qi, Bai Ru-Xue, Zhong Xiang Li, Li Ji-Fang, Cao Yan-Hui, Ju An-An
PDF
导出引用
  • 本文对第四代双沟槽型碳化硅场效应晶体管开展了不同栅极偏置电压下的60Co-γ辐照试验,并在辐照后进行了室温退火试验。实验结果表明辐照后器件的阈值电压负向漂移,且在正向栅极偏压下电学性能退化尤为明显。通过分析器件的1/f噪声特性发现,在不同栅极偏置条件下辐照后器件的漏极电流噪声归一化功率谱密度升高了4~9个数量级,这表明辐照后器件内部缺陷密度显著增加。对辐照后器件进行了24、48和168小时的室温退火实验,退火后器件阈值电压有所升高,表明器件的电学性能在室温下可以部分恢复,主要因为辐照产生的浅氧化物陷阱电荷在室温下退火,而深氧化物陷阱电荷和界面陷阱电荷在室温难以恢复。结合TCAD仿真模拟进一步分析器件总剂量效应微观机制,结果表明辐照在氧化层中诱生的大量氧化物陷阱电荷造成栅极氧化层中靠近沟道一侧的电场强度增大,导致器件的阈值电压负向漂移,影响器件性能。
    In this article, the impact of 60Co-γ ray irradiation on double trench SiC metal–oxide–semiconductor field-effect transistors (MOSFETs) was investigated under different condiation. First, the effect of the total ionizing dose(TID) on the electrical performance of the device at different gate bias voltages was carried out. The results indicate that at 150 krad (Si) irradiation dose, the threshold voltage of the device after irradiation decreases by 3.28 V and 2.36 V for gate voltages of +5 V and -5 V bias, respectively, whereas the threshold voltage of the device after irradiation decreases by only 1.36 V for a gate voltage of 0 V bias. The threshold voltage of the device after irradiation drifts in the negative direction, and the degradation of the electrical performance is especially obvious under the positive gate bias. This is attributed to the increase in the number of charges trapped in the oxide layer. Meanwhile, room temperature annealing experiments were performed on the irradiated devices for 24, 48 and 168 hours. The shallow oxide trap charges generated by irradiation annealed at room temperature, while the deep oxide trap charges and interface trap charges were difficult to recover at room temperature, resulting in an increase in the threshold voltage of the devices after annealing, indicating that the electrical properties of the devices could be partially recovered after annealing at room temperature. In order to characterise the effect of 60Co-γ ray irradiation on the interfacial state defect density of the devices, low frequency noise (1/f) tests were performed at different doses and different gate bias voltages. The 1/f low frequency noise test revealed that, under different bias voltages, the presence of oxide trap charges induced inside the oxide layer of the device after irradiation and the interfacial trap charges generated at the SiO2/SiC interface increased the irradiated defect density inside the device. This resulted in an increase of 4-9 orders of magnitude in the normalized power spectral density of the drain current noise of the irradiated device.To further obtain the irradiation damage mechanism of the device, a numerical simulation study was carried out using the TCAD simulation tool, and the results revealed that a large number of oxide trap charges induced by irradiation in the oxide layer cause an increase in the electric field strength in the gate oxide layer close to the trench side, which leads to a negative drift of the threshold voltage of the device and affects the performance of the device. The results of this paper can provide important theoretical references for the radiation effect mechanism and radiation reinforcement design of double trench SiC MOSFET devices.
  • [1]

    Matsuda T, Yokoseki T, Mitomo S, Murata K, Makino T, Abe H, Takeyama A, Onoda S, Tanaka Y, Kandori M, Yoshie T, Hijikata Y, Ohshima T 2016Mater. Sci. Forum 858 860

    [2]

    Murata K, Mitomo S, Matsuda T, Yokoseki T, Makino T, Onoda S, Takeyama A, Ohshima T, Okubo S, Tanaka Y, Kandori M, Yoshie T, Hijikata Y 2017Phys. Status Solidi A 214 1600446

    [3]

    Ohshima T, Yoshikawa M, Itoh H, Aoki Y, Nashiyama I 1999Mater. Sci. Eng. B 61–62 480

    [4]

    Takeyama A, Makino T, Okubo S, Tanaka Y, Yoshie T, Hijikata Y, Ohshima T 2019Materials 12 2741

    [5]

    Dimitrijev S, Jamet P 2003Microelectron. Reliab. 43 225

    [6]

    Liu J, Lu J, Tian X, Chen H, Bai Y, Liu X 2020Electron. Lett. 56 1273

    [7]

    Pappis D, Zacharias P 2017201719th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe) , 2017-09 ppP.1-P.11

    [8]

    Sato I, Tanaka T, Hori M, Yamada R, Toba A, Kubota H 2021Electr. Eng. Jpn. 214 e23323

    [9]

    Winokur P S, Schwank J R, McWhorter P J, Dressendorfer P V, Turpin D C 1984IEEE Trans. Nucl. Sci. 31 1453

    [10]

    Akturk A, McGarrity J M, Potbhare S, Goldsman N 2012IEEE Trans. Nucl. Sci. 59 3258

    [11]

    Popelka S, Hazdra P 2016Mater. Sci. Forum 858 856

    [12]

    Yu Q, Ali W, Cao S, Wang H, Lv H, Sun Y, Mo R, Wang Q, Mei B, Sun J, Zhang H, Tang M, Bai S, Zhang T, Bai Y, Zhang C 2022IEEE Trans. Nucl. Sci. 69 1127

    [13]

    Sampath M, Morisette D, Cooper J 2018Mater. Sci. Forum 924 752

    [14]

    Gu Z Q, Guo H X, Pan X Y, Lei Z F, Zhang F Q, Zhang H, Ju A A, Liu Y T 2021Acta Phys. Sin. 70 166101(in Chinese) [顾朝桥,郭红霞,潘霄宇,雷志峰,张凤祁,张鸿,琚安安,柳奕天2021物理学报70 166101]

    [15]

    Chen W H, Du L, Zhuang Y Q, Bao J L, He L, Zhang T F, Zhang X 2009Acta Phys. Sin. 58 4090(in Chinese) [陈伟华, 杜磊, 庄奕琪, 包军林, 何亮, 张天福, 张雪2009Acta Phys. Sin. 58 4090]

    [16]

    Liu Z L, Hu Z Y, Zhang Z X, Shao H, Ning B X, Bi D W, Chen M, Zou S C 2011Acta Phys. Sin. 60 116103(in Chinese) [刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌2011物理学报60 116103]

    [17]

    Oldham T R, McLean F B 2003IEEE Trans. Nucl. Sci. 50 483

    [18]

    Meng Y 2024M.S. Thesis (Yangzhou:Yang Zhou University) (in Chinese) [孟洋2024硕士学位论文学位论文(扬州大学)]

    [19]

    Wan X 2016Ph. D. Dissertation (Beijing: Tsinghua University) (in Chinese) [万欣2017博士学位论文学位论文(清华大学)]

    [20]

    Fleetwood D M, Winokur P S, Schwank J R 1988IEEE Trans. Nucl. Sci. 35 1497

    [21]

    Shaneyfelt M R, Schwank J R, Fleetwood D M, Winokur P S, Hughes K L, Sexton F W 1990IEEE Trans. Nucl. Sci. 37 1632

    [22]

    McWhorter P J, Winokur P S 1986Appl. Phys. Lett. 48 133

    [23]

    Mitomo S, Matsuda T, Murata K, Yokoseki T, Makino T, Takeyama A, Onoda S, Ohshima T, Okubo S, Tanaka Y, Kandori M, Yoshie T, Hijikata Y 2017Phys. Status Solidi A 214 1600425

    [24]

    Scofield J H, Fleetwood D M 1991IEEE Trans. Nucl. Sci. 38 1567

    [25]

    Silvestri M, Uren M J, Killat N, Marcon D, Kuball M 2013Appl. Phys. Lett. 103 043506

    [26]

    Wang J L, Chen Y Q, Feng J T, Xu X B, En Y F, Hou B, Gao R, Chen Y, Huang Y, Geng K W 2020IEEE J. Electron. Dev. Soc. 8 145

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, doi: 10.7498/aps.73.20231829
    [2] 王甫, 周毅, 高士鑫, 段振刚, 孙志鹏, 汪俊, 邹宇, 付宝勤. 碳化硅中点缺陷对热传导性能影响的分子动力学研究. 物理学报, doi: 10.7498/aps.71.20211434
    [3] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, doi: 10.7498/aps.71.20211795
    [4] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, doi: 10.7498/aps.70.20211795
    [5] 张鸿, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 顾朝桥, 柳奕天, 琚安安, 欧阳晓平. 重离子在碳化硅中的输运过程及能量损失. 物理学报, doi: 10.7498/aps.70.20210503
    [6] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, doi: 10.7498/aps.70.20202028
    [7] 李顺, 宋宇, 周航, 代刚, 张健. 双极型晶体管总剂量效应的统计特性. 物理学报, doi: 10.7498/aps.70.20201835
    [8] 李增辉, 李曙光, 李建设, 王璐瑶, 王晓凯, 王彦, 龚琳, 程同蕾. 一种具有低串扰低非线性的双沟槽环绕型十三芯五模光纤. 物理学报, doi: 10.7498/aps.70.20201825
    [9] 鲁媛媛, 鹿桂花, 周恒为, 黄以能. 锂辉石/碳化硅复相陶瓷材料的制备与性能. 物理学报, doi: 10.7498/aps.69.20200232
    [10] 李媛媛, 喻寅, 孟川民, 张陆, 王涛, 李永强, 贺红亮, 贺端威. 金刚石-碳化硅超硬复合材料的冲击强度. 物理学报, doi: 10.7498/aps.68.20190350
    [11] 申帅帅, 贺朝会, 李永宏. 质子在碳化硅中不同深度的非电离能量损失. 物理学报, doi: 10.7498/aps.67.20181095
    [12] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, doi: 10.7498/aps.67.20180829
    [13] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, doi: 10.7498/aps.65.057501
    [14] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, doi: 10.7498/aps.63.226101
    [15] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析. 物理学报, doi: 10.7498/aps.62.197201
    [16] 宋坤, 柴常春, 杨银堂, 贾护军, 陈斌, 马振洋. 改进型异质栅对深亚微米栅长碳化硅MESFET特性影响. 物理学报, doi: 10.7498/aps.61.177201
    [17] 房超, 刘马林. 包覆燃料颗粒碳化硅层的Raman光谱研究. 物理学报, doi: 10.7498/aps.61.097802
    [18] 周耐根, 洪涛, 周浪. MEAM势与Tersoff势比较研究碳化硅熔化与凝固行为. 物理学报, doi: 10.7498/aps.61.028101
    [19] 林 涛, 陈治明, 李 佳, 李连碧, 李青民, 蒲红斌. 6H碳化硅衬底上硅碳锗薄膜的生长特性研究. 物理学报, doi: 10.7498/aps.57.6007
    [20] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, doi: 10.7498/aps.53.194
计量
  • 文章访问数:  38
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2025-01-08

/

返回文章
返回