搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层Z-Bi2O2Se本征点缺陷及光电性能

郑世姣 杨文跃 杨致 徐利春 冯琳 陈波 薛林

引用本文:
Citation:

单层Z-Bi2O2Se本征点缺陷及光电性能

郑世姣, 杨文跃, 杨致, 徐利春, 冯琳, 陈波, 薛林
cstr: 32037.14.aps.74.20241701

Intrinsic point defects and optoelectronic properties in monolayer Z-Bi2O2Se

ZHENG Shijiao, YANG Wenyue, YANG Zhi, XU Lichun, FENG Lin, CHEN Bo, XUE Lin
cstr: 32037.14.aps.74.20241701
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用基于密度泛函理论的第一性原理和非平衡格林函数方法, 系统研究了单层拉链型硒氧化铋(Z-Bi2O2Se)中空位、反位和吸附点缺陷的结构、电子和光电性质. 通过在不同生长环境下形成能的计算发现, 点缺陷O' 空位, O取代Se反位、Se 吸附Bi'-Bi'-Se和Bi-Bi-Se穴位相对容易形成; 电子态密度及形成能的计算结果显示, O' 空位、Se吸附Bi'-Bi'-Se和Bi-Bi-Se穴位属于深能级n型掺杂. 此外, 沿平行和垂直拉链方向分别构建了基于单层Z-Bi2O2Se的器件, 其光电性能表现出明显的各向异性. 点缺陷的引入降低了体系对称性, 使其光电流在可见光区和紫外光区显著增大, 各向异性仍然存在. 点缺陷对器件消光比的影响同时取决于点缺陷类型及光子能量, 通过选择点缺陷在特定光子能量的照射可以有效提高器件的偏振灵敏度. 本文研究结果对深入认识二维Bi2O2Se结构及其性能提供理论指导.
    The novel layered semiconductor material bismuth oxyselenide (Bi2O2Se) exhibits exceptional properties such as thickness-dependent bandgap, superior electron mobility, compatibility with various materials, and stability under ambient conditions. The zipper-type two-dimensional Bi2O2Se (Z-Bi2O2Se) is a newly proposed structure based on theoretical studies of material surface dissociation mechanisms. However, current understanding of this structure still mainly focuses on fundamental investigations of electronic properties such as band structures. Intrinsic point defects, which are inevitable during material synthesis and operational environments, significantly influence the physical characteristics of materials and ultimately dictate device performance. In this work, we conduct an in-depth exploration of intrinsic point defects in the material. Using first-principles calculations based on density functional theory (DFT) and non-equilibrium Green’s function (NEGF) methods, we systematically investigate the structural, electronic, and optoelectronic properties of vacancies, antisites, and adatom point defects in Z-Bi2O2Se. First, the formation energy calculations under different growth conditions reveal that o'vacancy, Se replaced by O, Se adsorption on “Bi'-Bi'-Se” and “Bi-Bi-Se” hollow sites are relatively easy to form. The density of states (DOS) and formation energy shows that o'vacancy, Se adsorption on “Bi'-Bi'-Se” and “Bi-Bi-Se” hollow sites tend to lose electrons and become positively charged. Their donor levels are located at 0.78 eV, 0.01 eV, and 0.07 eV above the valence band maximum (VBM), but well below the conduction band minimum (CBM), indicating deep-level n-type doping characteristics. Furthermore, devices based on monolayer Z-Bi2O2Se along the parallel (Z//) direction and perpendicular (Z) direction of the “zipper” structure are constructed to investigate the influence of intrinsic point defects on optoelectronic performance. The results show that for pristine materials, the photocurrent of Z-perfect in the visible and ultraviolet regions is two orders of magnitude smaller than that of Z//-perfect, demonstrating significant anisotropy. The introduction of point defects reduces system’s symmetry, leading to a remarkable enhancement of photocurrent in both devices in these spectral regions. Notably, in the Z direction, the point defects induce the photocurrent to increase by three orders of magnitude. However, the photocurrent remains relatively small compared with that in Z// direction, indicating persistent anisotropy. The influence of point defects on the extinction ratio depends on both defect types and photon energy. By selecting specific point defects under irradiation at targeted photon energy, the polarization sensitivity of devices can be effectively improved. These findings provide theoretical guidance for deepening the understanding of the electronic structure and optoelectronic properties of two-dimensional Z-Bi2O2Se.
      通信作者: 薛林, xuelin@tyut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62104168)和山西省自然科学基金(批准号: 20210302123201, 202303021211027, 202303021211028)资助的课题.
      Corresponding author: XUE Lin, xuelin@tyut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62104168) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 20210302123201, 202303021211027, 202303021211028).
    [1]

    Wu J X, Yuan H T, Meng M M, et al. 2017 Nature Nanotech. 12 530Google Scholar

    [2]

    Fu H X, Wu J X, Peng H L, Yan B H 2018 Phys. Rev. B 95 241203Google Scholar

    [3]

    Wang C, Ding G Q, Wu X M, Wei S S, Gao G Y 2018 New J. Phys. 20 123014Google Scholar

    [4]

    Jiang H T, Xu X, Fan C, Dai B B, Qi Z D, Jiang S, Cai M Q, Zhang Q L 2022 Chin. Phys. B 31 048102Google Scholar

    [5]

    Li J, Wang Z X, Wen Y, Chu J, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [6]

    Tong T, Chen Y F, Qin S C, et al. 2019 Adv. Funct. Mater. 29 1905806Google Scholar

    [7]

    Liu B, Zhou H 2021 Chin. Phys. B 30 106803Google Scholar

    [8]

    Ding X, Li M L, Chen P, et al. 2022 Matter 5 4274Google Scholar

    [9]

    Tippireddy S, Prem Kumar D S, Das S, Mallik R C 2021 ACS Appl. Energy Mater. 4 2022Google Scholar

    [10]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano. Lett. 17 3021Google Scholar

    [11]

    Liang Y, Chen Y J, Sun Y W, et al. 2019 Adv. Mater. 31 1901964Google Scholar

    [12]

    Wu J X, Qiu C G, Fu H X, et al. 2019 Nano. Lett. 19 197Google Scholar

    [13]

    Song Y K, Li Z J, Li H, et al. 2020 Nanotechnology 31 165704Google Scholar

    [14]

    Wang H, Zhang Z K, Luo H J, Zhang S Q, Pan W W, Liu J L, Ren Y L, Lei W 2024 Adv. Optical Mater. 12 2401404Google Scholar

    [15]

    Chen G X, Wu J, Wang B, Li J, Qi X 2020 Appl. Phys. A 126 579Google Scholar

    [16]

    Chen G X, Zhou Y, Zhang G B, Li J, Qi X 2021 Ceram. Int. 47 25255Google Scholar

    [17]

    李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰 2020 物理学报 69 248502Google Scholar

    Li D Y, Han X, Xu G Y, Liu X, Zhao X J, Li G W, Hao H Y, Dong J J, Liu H, Xing J 2020 Acta Phys. Sin. 69 248502Google Scholar

    [18]

    Khan U, Luo Y T, Tang L, Teng C J, Liu J M, Liu B L, Cheng H M 2019 Adv. Funct. Mater. 29 1807979Google Scholar

    [19]

    Wang N, Li M L, Xiao H Y, Gong H F, Liu Z J, Zu X T, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097Google Scholar

    [20]

    Tang H, Shi B W, Wang Y Y, Yang C, Liu S Q, Li Y, Quhe R G, Lu J 2021 Phys. Rev. Appl. 15 064037Google Scholar

    [21]

    Pang Z Q, Li T 2021 J. Mech. Phys. Solids 157 104626Google Scholar

    [22]

    Li J Q, Cheng C, Duan M Y 2023 Appl. Surf. Sci. 618 156541Google Scholar

    [23]

    Wei Q L, Li R P, Lin C Q, Han A, Nie A M, Li Y R, Li L J, Cheng Y C, Huang W 2019 ACS Nano. 13 13439Google Scholar

    [24]

    Ge Z C, Zhao W, Yuan S F, Gao Z X, Hao C L, Ma H, Ren H, Guo W Y 2023 Appl. Surf. Sci. 611 155528Google Scholar

    [25]

    Lu S C, Li Y L, Zhao X 2023 Phys. Chem. Chem. Phys. 25 19167Google Scholar

    [26]

    Hossain M T, Jena T, Debnath S, Giri P K 2023 J. Mater. Chem. C 11 6670Google Scholar

    [27]

    Li H L, Xu X T, Zhang Y, Gillen R, Shi L P, Robertson J 2018 Sci. Rep. 8 10920Google Scholar

    [28]

    Wei Q L, Lin C Q, Li Y F, Zhang X Y, Zhang Q Y, Shen Q, Cheng Y C, Huang W 2018 J. Appl. Phys. 124 055701Google Scholar

    [29]

    Wu Z, Wang Y, Liu G, Yang X, Wei T, Zhang H, Zhou J, Zhu J 2021 Mater. Today 21 100810Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [32]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [36]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [37]

    Freysoldt C, Neugebauer J 2018 Phys. Rev. B 97 205425Google Scholar

    [38]

    Freysoldt C, Neugebauer J, Van de Walle C G 2009 Phys. Rev. Lett. 102 016402Google Scholar

    [39]

    Xue L, Sun L Z, Hao G L, Zhou P, He C Y, Huang Z Y, Zhong J X 2014 RSC Adv. 4 10499Google Scholar

    [40]

    Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L L, Wei J C, Chen S Y 2022 J. Semicond. 43 042101Google Scholar

    [41]

    Fu Z T, Yan P L, Li J, Zhang S F, He C Y, Ouyang T, Zhang C X, Tang C, Zhong J X 2022 Nanoscale 14 11316Google Scholar

    [42]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [43]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428Google Scholar

    [44]

    Chen J Z, Hu Y B, Guo H 2012 Phys. Rev. B 85 155441Google Scholar

    [45]

    Chu F H, Chen M Y, Wang Y, Xie Y Q, Liu B Y, Yang Y H, An X T, Zhang Y Z 2018 J. Mater. Chem. C 6 2509Google Scholar

    [46]

    Xie Y Q, Zhang L, Zhu Y, Liu L, Guo H 2015 Nanotechnology 26 455202Google Scholar

    [47]

    Xu Z H, Luo B, Chen M Y, Xie W Z, Hu Y B, Xiao X B 2021 Appl. Surf. Sci. 548 148751Google Scholar

    [48]

    Belinicher V I 1978 Phys. Lett. A 66 213Google Scholar

    [49]

    Zhang L W, Yang Y Q, Chen J, Zhang L 2023 Front. Phys. 18 62301Google Scholar

    [50]

    Luo Y Z, Xie Y Q, Zhao J, Hu Y B, Ye X, Ke S H 2021 Phys. Rev. Mater. 5 054004Google Scholar

    [51]

    Zhao J, Hu Y B, Xie Y Q, Zhang L, Wang Y 2020 Phys. Rev. Appl. 14 064003Google Scholar

    [52]

    Sun X X, Yin S Q, Wei D, Li Y, Ma Y Q, Dai X Q 2023 Appl. Surf. Sci. 610 155401Google Scholar

  • 图 1  (a)块体 Bi2O2Se 的单胞结构; (b)单层 Z-Bi2O2Se 的侧视图及俯视图; (c)单层 Z-Bi2O2Se 的电子能带结构(蓝色为PBE方法); (d) Bi2O2Se 生长的化学势范围(黄色区域)

    Fig. 1.  (a) Unit cell structure of bulk Bi2O2Se; (b) the side and top views of monolayer Z-Bi2O2Se; (c) the electronic energy bands of the monolayer Z-Bi2O2Se (bule represents PBE); (d) the chemical potentials range for the growth of Bi2O2Se (the yellow part).

    图 2  (a)在不同生长环境P1—P5时, 单层 Z-Bi2O2Se 中点缺陷的形成能; (b)单层 Z-Bi2O2Se 中点缺陷OSe, $\rm V_{O'}$, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $和$ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $的结构图

    Fig. 2.  (a) Formation energies of the point defects in monolayer Z-Bi2O2Se under different growth environments P1–P5; (b) the structures of the point defects OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $ and $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $ in monolayer Z-Bi2O2Se.

    图 3  (a) Z-Bi2O2Se 完整体系与含 (b) OSe, (c) $\rm V_{O'} $, (d) $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $, (e) $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $ 点缺陷体系总态密度和投影态密度图, 插图为杂质态部分原子投影态密度

    Fig. 3.  The TDOS and PDOS of (a) the perfect Z-Bi2O2Se and (b) OSe, (c) $\rm V_{O'} $, (d) $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}}$, (e) $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $ doped systems, and the insets are the enlarge views of the impurity states.

    图 4  不同化学势条件(P1, P2, P3, P4, P5)下, 点缺陷OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $和$ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $的形成能随费米能级的变化(将VBM处设置为零点, 线的斜率表示缺陷在该费米能级处的电荷态)

    Fig. 4.  Formation energies of point defects (OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $and $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $) in Bi2O2Se are as a function of the Fermi level under different chemical potential conditions (P1–P5). For all cases, the VBM are set for zero. The slope of the lines gives the charge state at the Fermi level.

    图 5  线偏振光照射下(a)单层 Z//-Bi2O2Se和(b)单层 Z-Bi2O2Se 光电探测器结构示意图

    Fig. 5.  Schematic structures of (a) monolayer Z//-Bi2O2Se and (b) monolayer Z-Bi2O2Se photodetectors under the linearly polarized light.

    图 6  基于单层 Z//-Bi2O2Se和 Z-Bi2O2Se 完整结构和含点缺陷OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $和$ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $的器件在θ = 0° 和 θ = 90° 线偏振光照射下的光电流(插图为低光子能量区域放大图)

    Fig. 6.  Photocurrents functions of the devices based on perfect and OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $, $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $doped monolayer Z//-Bi2O2Se and Z-Bi2O2Se under θ = 0° and θ = 90° linearly polarized light (the insets are the enlarged views of the low-photo-energy region).

    图 7  单层 Z//-Bi2O2Se和 Z-Bi2O2Se 完整结构和含点缺陷OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $和$ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $器件在不同光子能量下的消光比

    Fig. 7.  Extinction ratios of devices based on perfect and OSe, $\rm V_{O'} $, $ \text{Se}_{\text{Bi}'\text{-Bi}'\text{-Se}}^{\text{H}} $ and $ {\text{Se}}_{{\text{Bi-Bi-Se}}}^{\text{H}} $ doped monolayer Z//-Bi2O2Se and Z-Bi2O2Se at different photon energies.

    表 1  图1(d)中5个临界点 P1—P5 对应的O, Se, Bi的化学势$ {\mu _\text{O}} $, $ {\mu _\text{Se}} $, $ {\mu _{{\text{Bi}}}} $(单位: eV)

    Table 1.  Chemical potentials of O, Se and Bi ($ {\mu _\text{O}} $, $ {\mu _\text{Se}} $, $ {\mu _{{\text{Bi}}}} $) corresponding to the five critical points P1–P5 in Fig. 1(d) (unit: eV).

    P1 P2 P3 P4 P5
    $ {\mu _\text{O}} $ –2.07 –2.16 –1.51 –1.44 –1.44
    $ {\mu _\text{Se}} $ –0.82 –0.64 0.00 0.00 –0.19
    $ {\mu _{{\text{Bi}}}} $ 0.00 0.00 –0.96 –1.04 –0.94
    下载: 导出CSV
  • [1]

    Wu J X, Yuan H T, Meng M M, et al. 2017 Nature Nanotech. 12 530Google Scholar

    [2]

    Fu H X, Wu J X, Peng H L, Yan B H 2018 Phys. Rev. B 95 241203Google Scholar

    [3]

    Wang C, Ding G Q, Wu X M, Wei S S, Gao G Y 2018 New J. Phys. 20 123014Google Scholar

    [4]

    Jiang H T, Xu X, Fan C, Dai B B, Qi Z D, Jiang S, Cai M Q, Zhang Q L 2022 Chin. Phys. B 31 048102Google Scholar

    [5]

    Li J, Wang Z X, Wen Y, Chu J, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437Google Scholar

    [6]

    Tong T, Chen Y F, Qin S C, et al. 2019 Adv. Funct. Mater. 29 1905806Google Scholar

    [7]

    Liu B, Zhou H 2021 Chin. Phys. B 30 106803Google Scholar

    [8]

    Ding X, Li M L, Chen P, et al. 2022 Matter 5 4274Google Scholar

    [9]

    Tippireddy S, Prem Kumar D S, Das S, Mallik R C 2021 ACS Appl. Energy Mater. 4 2022Google Scholar

    [10]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano. Lett. 17 3021Google Scholar

    [11]

    Liang Y, Chen Y J, Sun Y W, et al. 2019 Adv. Mater. 31 1901964Google Scholar

    [12]

    Wu J X, Qiu C G, Fu H X, et al. 2019 Nano. Lett. 19 197Google Scholar

    [13]

    Song Y K, Li Z J, Li H, et al. 2020 Nanotechnology 31 165704Google Scholar

    [14]

    Wang H, Zhang Z K, Luo H J, Zhang S Q, Pan W W, Liu J L, Ren Y L, Lei W 2024 Adv. Optical Mater. 12 2401404Google Scholar

    [15]

    Chen G X, Wu J, Wang B, Li J, Qi X 2020 Appl. Phys. A 126 579Google Scholar

    [16]

    Chen G X, Zhou Y, Zhang G B, Li J, Qi X 2021 Ceram. Int. 47 25255Google Scholar

    [17]

    李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰 2020 物理学报 69 248502Google Scholar

    Li D Y, Han X, Xu G Y, Liu X, Zhao X J, Li G W, Hao H Y, Dong J J, Liu H, Xing J 2020 Acta Phys. Sin. 69 248502Google Scholar

    [18]

    Khan U, Luo Y T, Tang L, Teng C J, Liu J M, Liu B L, Cheng H M 2019 Adv. Funct. Mater. 29 1807979Google Scholar

    [19]

    Wang N, Li M L, Xiao H Y, Gong H F, Liu Z J, Zu X T, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097Google Scholar

    [20]

    Tang H, Shi B W, Wang Y Y, Yang C, Liu S Q, Li Y, Quhe R G, Lu J 2021 Phys. Rev. Appl. 15 064037Google Scholar

    [21]

    Pang Z Q, Li T 2021 J. Mech. Phys. Solids 157 104626Google Scholar

    [22]

    Li J Q, Cheng C, Duan M Y 2023 Appl. Surf. Sci. 618 156541Google Scholar

    [23]

    Wei Q L, Li R P, Lin C Q, Han A, Nie A M, Li Y R, Li L J, Cheng Y C, Huang W 2019 ACS Nano. 13 13439Google Scholar

    [24]

    Ge Z C, Zhao W, Yuan S F, Gao Z X, Hao C L, Ma H, Ren H, Guo W Y 2023 Appl. Surf. Sci. 611 155528Google Scholar

    [25]

    Lu S C, Li Y L, Zhao X 2023 Phys. Chem. Chem. Phys. 25 19167Google Scholar

    [26]

    Hossain M T, Jena T, Debnath S, Giri P K 2023 J. Mater. Chem. C 11 6670Google Scholar

    [27]

    Li H L, Xu X T, Zhang Y, Gillen R, Shi L P, Robertson J 2018 Sci. Rep. 8 10920Google Scholar

    [28]

    Wei Q L, Lin C Q, Li Y F, Zhang X Y, Zhang Q Y, Shen Q, Cheng Y C, Huang W 2018 J. Appl. Phys. 124 055701Google Scholar

    [29]

    Wu Z, Wang Y, Liu G, Yang X, Wei T, Zhang H, Zhou J, Zhu J 2021 Mater. Today 21 100810Google Scholar

    [30]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [31]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558Google Scholar

    [32]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169Google Scholar

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [36]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133Google Scholar

    [37]

    Freysoldt C, Neugebauer J 2018 Phys. Rev. B 97 205425Google Scholar

    [38]

    Freysoldt C, Neugebauer J, Van de Walle C G 2009 Phys. Rev. Lett. 102 016402Google Scholar

    [39]

    Xue L, Sun L Z, Hao G L, Zhou P, He C Y, Huang Z Y, Zhong J X 2014 RSC Adv. 4 10499Google Scholar

    [40]

    Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L L, Wei J C, Chen S Y 2022 J. Semicond. 43 042101Google Scholar

    [41]

    Fu Z T, Yan P L, Li J, Zhang S F, He C Y, Ouyang T, Zhang C X, Tang C, Zhong J X 2022 Nanoscale 14 11316Google Scholar

    [42]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407Google Scholar

    [43]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428Google Scholar

    [44]

    Chen J Z, Hu Y B, Guo H 2012 Phys. Rev. B 85 155441Google Scholar

    [45]

    Chu F H, Chen M Y, Wang Y, Xie Y Q, Liu B Y, Yang Y H, An X T, Zhang Y Z 2018 J. Mater. Chem. C 6 2509Google Scholar

    [46]

    Xie Y Q, Zhang L, Zhu Y, Liu L, Guo H 2015 Nanotechnology 26 455202Google Scholar

    [47]

    Xu Z H, Luo B, Chen M Y, Xie W Z, Hu Y B, Xiao X B 2021 Appl. Surf. Sci. 548 148751Google Scholar

    [48]

    Belinicher V I 1978 Phys. Lett. A 66 213Google Scholar

    [49]

    Zhang L W, Yang Y Q, Chen J, Zhang L 2023 Front. Phys. 18 62301Google Scholar

    [50]

    Luo Y Z, Xie Y Q, Zhao J, Hu Y B, Ye X, Ke S H 2021 Phys. Rev. Mater. 5 054004Google Scholar

    [51]

    Zhao J, Hu Y B, Xie Y Q, Zhang L, Wang Y 2020 Phys. Rev. Appl. 14 064003Google Scholar

    [52]

    Sun X X, Yin S Q, Wei D, Li Y, Ma Y Q, Dai X Q 2023 Appl. Surf. Sci. 610 155401Google Scholar

  • [1] 闫丽彬, 白雨蓉, 李培, 柳文波, 何欢, 贺朝会, 赵小红. InP中点缺陷迁移机制的第一性原理计算. 物理学报, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [3] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运. 物理学报, 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [4] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质. 物理学报, 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [5] 刘思冕, 韩卫忠. 金属材料界面与辐照缺陷的交互作用机理. 物理学报, 2019, 68(13): 137901. doi: 10.7498/aps.68.20190128
    [6] 谢修华, 李炳辉, 张振中, 刘雷, 刘可为, 单崇新, 申德振. 点缺陷调控: 宽禁带II族氧化物半导体的机遇与挑战. 物理学报, 2019, 68(16): 167802. doi: 10.7498/aps.68.20191043
    [7] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算. 物理学报, 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [8] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用. 物理学报, 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [9] 柳福提, 程艳, 陈向荣, 程晓洪, 曾志强. Au-Si60-Au分子结电子输运性质的理论计算. 物理学报, 2014, 63(17): 177304. doi: 10.7498/aps.63.177304
    [10] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算. 物理学报, 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [11] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算. 物理学报, 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [12] 焦照勇, 郭永亮, 牛毅君, 张现周. 缺陷黄铜矿结构Xga2S4 (X=Zn, Cd, Hg)晶体电子结构和光学性质的第一性原理研究. 物理学报, 2013, 62(7): 073101. doi: 10.7498/aps.62.073101
    [13] 邓娇娇, 刘波, 顾牡, 刘小林, 黄世明, 倪晨. 伽马CuX(X=Cl,Br,I)的电子结构和光学性质的第一性原理计算. 物理学报, 2012, 61(3): 036105. doi: 10.7498/aps.61.036105
    [14] 曹永军, 谭伟, 刘燕. 二维磁振子晶体中点缺陷模的耦合性质研究. 物理学报, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [15] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, 2010, 59(11): 7880-7884. doi: 10.7498/aps.59.7880
    [16] 谭兴毅, 金克新, 陈长乐, 周超超. YFe2B2电子结构的第一性原理计算. 物理学报, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [17] 敖冰云, 汪小琳, 陈丕恒, 史鹏, 胡望宇, 杨剑瑜. 嵌入原子法计算金属钚中点缺陷的能量. 物理学报, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [19] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究. 物理学报, 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [20] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
计量
  • 文章访问数:  312
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-09
  • 修回日期:  2025-03-13
  • 上网日期:  2025-04-24

/

返回文章
返回