搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气流流型和流速耦合作用下固体氧化物燃料电池电化学性能

王浩 谢佳苗 郝文乾 李京阳 张鹏 马晓帆 刘福 王旭

引用本文:
Citation:

气流流型和流速耦合作用下固体氧化物燃料电池电化学性能

王浩, 谢佳苗, 郝文乾, 李京阳, 张鹏, 马晓帆, 刘福, 王旭

Electrochemical properties of solid oxide fuel cells under the coupling effect of airflow pattern and airflow velocity

WANG Hao, XIE Jiamiao, HAO Wenqian, LI Jingyang, ZHANG Peng, MA Xiaofan, LIU Fu, WANG Xu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 在全球能源格局深度调整与环境问题严峻挑战的双重背景下, 固体氧化物燃料电池(SOFC)凭借其诸多卓越特性, 成为高效清洁能量转换技术的研究焦点. SOFC的电化学性能受到气流流型、流速及工作电压等多种因素影响, 准确分析电池的电化学指标随各因素的变化情况, 是提出电池高效反应设计方案的基础. 因此, 本研究建立了SOFC的三维多场耦合模型, 研究了各因素间耦合作用对电池电化学性能的影响规律. 研究结果表明, 随着工作电压的降低, 电池的电化学反应速率显著提高, 气体摩尔分数梯度增大, 电解质电流密度分布不均性增强. 对于低电压工况, 交叉流流型展现出更好的电化学性能优势, 其功率密度曲线在不同电流密度区间均占据领先地位. 随着流道气体流速的提升, 电池的输出功率密度曲线呈上升趋势, 后续因阴极反应渐趋饱和, 流速提升对功率密度增长的推动作用逐渐弱化. 本研究揭示了流型、流速与电压的耦合作用对SOFC电化学性能的影响, 为SOFC的商业化应用提供指导.
    Under the dual background of deep adjustment of global energy pattern and severe challenges of environmental problems, solid oxide fuel cell (SOFC) has become the focus of research on efficient and clean energy conversion technology due to its many excellent characteristics. The electrochemical performance of SOFC is affected by various factors such as gas flow pattern (co-flow, counter-flow, cross-flow), flow rate (cathode and anode channel gases), and operating voltage. Accurately analysing the variation of electrochemical indexes with each factor is the basis for proposing the design scheme of high efficiency reaction of the cell. Therefore, a three-dimensional multi-field coupling model of SOFC is established in this study, and the model parameters and boundary conditions covering electrochemistry, gas flow, substance diffusion, etc. are set to study the influence of the coupling between factors on the electrochemical performance of the cell. These results show that with the decrease of operating voltage, the electrochemical reaction rate of the cell increases significantly, the gas mole fraction gradient increases, and the inhomogeneity of the electrolyte current density distribution is enhanced. Under low-voltage operating conditions, the cross-flow flow pattern shows better electrochemical performance advantages, and its power density profile takes the lead in different current density intervals. With the increase of the flow rate of the flow channel gas, the output power density curve of the cell shows an overall upward trend, and then the driving effect of the flow rate increase on the power density increase is gradually weakened due to the saturated cathodic reaction. This study reveals the influence of the coupling of flow pattern, flow rate and voltage on the electrochemical performance of SOFC, and provides guidance for the commercial application of SOFC.
  • 图 1  SOFC几何结构和有限元模型 (a) 顺流/逆流形式的几何结构; (b) 交叉流形式的几何结构; (c) 顺流/逆流形式的有限元模型; (d) 交叉流形式的有限元模型

    Fig. 1.  Geometry structure and finite element model of SOFC: (a) Geometry structure of co-flow/counter-flow patterns; (b) geometry structure of cross-flow pattern; (c) finite element model of co-flow/counter-flow patterns; (d) finite element model of cross-flow pattern.

    图 2  当前有限元模型的极化曲线与文献[31]得到的结果对比图

    Fig. 2.  Comparison of the polarization curves between the results of current finite element model and the results obtained in Ref. [31].

    图 3  当前有限元模型的气体组分分布与文献[31]得到的结果对比图 (a) 氢气摩尔分数; (b)氧气摩尔分数; (c) 水蒸气摩尔分数

    Fig. 3.  Comparison of the gas components distribution between the results of current finite element model and the results obtained by Ref. [31]: (a) Hydrogen mole fraction; (b) oxygen mole fraction; (c) water vapor mole fraction.

    图 4  顺流情况下SOFC电解质电流密度分布 (a)不同电压下电解质电流密度最大值与最小值曲线图; (b)电压为0.9 V时电解质电流密度云图; (c)电压为0.6 V时电解质电流密度云图; (d)电压为0.3 V时电解质电流密度云图

    Fig. 4.  SOFC electrolyte current density distribution in the case of downstream: (a) Plot of maximum and minimum electrolyte current density at different voltages; (b) electrolyte current density cloud at voltage of 0.9 V; (c) electrolyte current density cloud at voltage of 0.6 V; (d) electrolyte current density cloud at voltage of 0.3 V.

    图 5  不同电压下氢气摩尔分数、氧气摩尔分数的极差

    Fig. 5.  The extremes of the molar fraction of hydrogen, oxygen at different voltages.

    图 6  不同流型下SOFC的极化曲线和功率密度曲线 (a) 极化曲线; (b) 功率密度曲线

    Fig. 6.  Polarization curves and power density curves of SOFC under different flow modes: (a) Polarization curves; (b) power density curves.

    图 7  不同电压下不同流道内氢气分布情况 (a) 氢气摩尔分数极差直方图; (b) 氢气摩尔分数分布云图

    Fig. 7.  Distribution of hydrogen in different flow channels under different voltages: (a) Histogram of the range of hydrogen mole fraction; (b) hydrogen molarity fraction distribution.

    图 8  不同电压下不同流道内氧气分布情况 (a) 氧气摩尔分数极差直方图; (b) 氧气摩尔分数分布云图

    Fig. 8.  Distribution of oxygen in different flow channels under different voltages: (a) Histogram of the variation range of oxygen mole fraction; (b) contour map of oxygen mole fraction distribution.

    图 9  电池电压为0.9 V时流道内速度分布 (a) 阳极流道内速度分布; (b) 阴极流道内速度分布

    Fig. 9.  Velocity distribution in the flow channel when the cell voltage is 0.9 V: (a) Velocity distribution in the anode flow channel; (b) velocity distribution in the cathode flow channel.

    图 10  电池电压为0.5 V时流道内速度分布 (a) 阳极流道内速度分布; (b) 阴极流道内速度分布

    Fig. 10.  Velocity distribution in the flow channel when the cell voltage is 0.5 V: (a) Velocity distribution in the anode flow channel; (b) velocity distribution in the cathode flow channel.

    图 11  阳极流道气体不同流速下电池极化曲线 (a) 顺流; (b) 逆流; (c) 交叉流

    Fig. 11.  SOFC polarization curves under different airflow velocities of anode channel gas: (a) Co-flow; (b) counter-flow; (c) cross-flow.

    图 12  阳极流道气体不同流速下电池功率密度曲线 (a) 顺流; (b) 逆流; (c) 交叉流

    Fig. 12.  SOFC power density curves at different airflow velocities of anode channel gases: (a) Co-flow; (b) counter-flow; (c) cross-flow.

    图 13  阴极流道气体不同流速下电池极化曲线 (a) 顺流; (b) 逆流; (c) 交叉流

    Fig. 13.  SOFC polarization curves under different airflow velocities of cathode flow channel gases: (a) Co-flow; (b) counter-flow; (c) cross-flow.

    图 14  阴极流道气体不同流速下电池功率密度曲线 (a) 顺流; (b) 逆流; (c) 交叉流

    Fig. 14.  SOFC power density curves at different airflow velocities of cathode channel gases: (a) Co-flow; (b) counter-flow; (c) cross-flow.

    表 1  SOFC单电池模型几何参数[31]

    Table 1.  Geometric parameters of SOFC single-cell model[31].

    几何参数数值
    电池长度/mm20.000
    电池宽度/mm20.000
    流道高度/mm1.000
    流道宽度/mm1.500
    肋宽/mm1.000
    阳极和阴极连接体厚度/mm2.000
    阳极扩散层厚度/mm0.015
    阳极厚度/mm0.400
    阴极扩散层厚度/mm0.020
    阴极厚度/mm0.050
    电解质厚度/mm0.010
    下载: 导出CSV

    表 2  电化学模型参数[28,29]

    Table 2.  Electrochemical model parameters[28,29].

    参数 数值
    阳极平衡电位/V 0
    电池工作电压/V 0.5
    阳极交换电流密度/(A·cm–2) 5
    阴极交换电流密度/(A·cm–2) 2
    阳极活性比表面积/m–1 1⊆105
    阴极活性比表面积/m-1 1⊆105
    电解质电导率/(S·m–1) 5
    阳极电导率/(S·m–1) 1000
    阴极电导率/(S·m–1) 1000
    阳极扩散层电导率/(S·m–1) 8.5⊆105
    阴极扩散层电导率/(S·m–1) 7700
    集流体电导率/(S·m–1) 1.4⊆106
    下载: 导出CSV

    表 4  物质扩散模型参数[28,29]

    Table 4.  Material diffusion model parameters[28,29].

    参数数值
    参考扩散率/(m2·s–1)3.16×10–8
    燃料气孔隙体积分数/%40
    氧化气孔隙体积分数/%40
    氢气摩尔质量/(g·mol–1)2
    氧气摩尔质量/(g·mol–1)32
    水蒸气摩尔质量/(g·mol–1)18
    氮气摩尔质量/(g·mol–1)28
    下载: 导出CSV

    表 3  气体流动模型参数[23,30]

    Table 3.  Gas flow model parameters[23,30].

    参数 数值
    大气压强/atm 1
    阳极渗透率/m2 1⊆10–12
    阴极渗透率/m2 1⊆10–12
    阳极孔隙率 0.3
    阴极孔隙率 0.3
    阳极流道气体入口速度/(m·s-1) 0.5—2.5
    阴极流道气体入口速度/(m·s-1) 1.0—0.5
    下载: 导出CSV
  • [1]

    Minh N Q, Takahashi T 1995 Science and Technology of Ceramic Fuel Cells (Amsterdam: Elsevier Science) p147

    [2]

    Singhal S C, Kendall K 2002 Mater. Today 5 55

    [3]

    申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣 2022 物理学报 71 164401Google Scholar

    Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022 Acta Phys. Sin. 71 164401Google Scholar

    [4]

    徐晗, 张璐, 党政 2020 物理学报 69 098801Google Scholar

    Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801Google Scholar

    [5]

    李凯, 李霄, 李箭, 谢佳苗 2019 无机材料学报 34 611Google Scholar

    Li K, Li X, Li J, Xie J M 2019 J. Inorg. Mater. 34 611Google Scholar

    [6]

    Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Ramakrishna S, Long Y Z 2022 Chin. Phys. B 31 057305Google Scholar

    [7]

    Al-Masri A, Peksen M, Blum L, Stolten D 2014 Appl. Energy 135 539Google Scholar

    [8]

    Razbani O, Assadi M, Andersson M 2013 Int. J. Hydrogen Energy 38 10068Google Scholar

    [9]

    Schluckner C, Subotic’ V, Lawlor V, Hochenauer C 2014 Int. J. Hydrogen Energy 39 19102Google Scholar

    [10]

    Schluckner C, Subotic ́ V, Lawlor V, Hochenauer C 2015 Int. J. Hydrogen Energy 40 10943Google Scholar

    [11]

    Danilov V A, Tade M O 2009 Int. J. Hydrogen Energy 34 8998Google Scholar

    [12]

    Haberman B A, Young J B 2004 Int. J. Heat Mass Transfer. 47 3617Google Scholar

    [13]

    Lu P Z, Wei S L, Du Z H, Ma W D, Ni S D 2024 Int. J. Heat Mass Transfer. 229 125708Google Scholar

    [14]

    Zhang Z G, Yue D T, Yang G G, Chen J F, Zheng Y F, Miao H, Wang W G, Yuan J L, Huang N B 2015 Int. J. Heat Mass Transfer. 84 942Google Scholar

    [15]

    Andersson M, Paradis H, Yuan J L, Sunde’n B 2013 Electrochim. Acta 109 881Google Scholar

    [16]

    Sohn S, Baek S. M, Nam J. H, Kim C-J 2016 Int. J. Hydrogen Energy 41 5582Google Scholar

    [17]

    Wang G L, Yang Y Z, Zhang H O, Xia W S 2007 J. Power Sources 167 398Google Scholar

    [18]

    Choudhary T, Sanjay 2016 Int. J. Hydrogen Energy 41 10212Google Scholar

    [19]

    Tan W C, Iwai H, Kishimoto M, Yoshida H 2018 J. Power Sources 400 135Google Scholar

    [20]

    William J, Sembler, Kumar S 2011 J. Fuel Cell Sci. Technol. 2 021007

    [21]

    Park J M, Kim D Y, Baek J D, Yoon Y J, Su P C, Lee S H 2018 Energies 11 473Google Scholar

    [22]

    Li Z, Yang G G, Cui D A, Li S, Shen Q W, Zhang G L, Zhang H P 2022 J. Power Sources. 522 230981Google Scholar

    [23]

    Zhan R B, Wang Y, Ni M, Zhang G B, Du Q, Jiao K 2020 Int. J. Hydrogen Energy 45 6897Google Scholar

    [24]

    Sawangtong W, Dunnimit P, Wiwatanapataphee B, Sawangtong P 2024 Part. Diff. Eq. Appl. Math. 11 100890

    [25]

    Li J S, Zhang J C, Zhang R 2025 J. Comput. Appl. Math. 460 116411Google Scholar

    [26]

    Shirsat V R, Vaidya P D, Dalvi V H, Singhal R. S, Kelkar A K, Joshi J B 2025 Sep. Purif. Technol. 354 129215Google Scholar

    [27]

    Tan W C, Iwai H, Kishimoto M, Yoshida H 2018 J. Power Sources 400 135Google Scholar

    [28]

    Nerat M, Juric ̌ic ́ D 2016 Int. J. Hydrogen Energy 41 3613Google Scholar

    [29]

    Chaudhary T N, Saleem U, Chen B 2019 Int. J. Hydrogen Energy 44 8425Google Scholar

    [30]

    Wang Y, Zhan R B, Qin Y Z, Zhang G B, Du Q, Jiao K 2018 Int. J. Hydrogen Energy 43 20059Google Scholar

    [31]

    刘艺辉 2023 硕士学位论文(大连: 大连海事大学)

    Liu Y H 2023 M. S. Thesis (Dalian: Dalian Maritime University

  • [1] 段坤, 陈健, 康瑶, 王旭东, 姚曼. MBene基高性能离子电池负极材料的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250251
    [2] 谢佳苗, 李京阳, 周佳逸, 郝文乾. 含有预裂纹的固体氧化物燃料电池的电极裂纹扩展分析. 物理学报, doi: 10.7498/aps.73.20241176
    [3] 蒋梅燕, 王平, 陈爱盛, 陈成克, 李晓, 鲁少华, 胡晓君. 纳米金刚石/竖立石墨烯复合三维电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.71.20220715
    [4] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, doi: 10.7498/aps.71.20220941
    [5] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣. 固体氧化物燃料电池温升模拟中入口异常高温度梯度研究. 物理学报, doi: 10.7498/aps.71.20220031
    [6] 徐晗, 张璐. 空间电荷层效应对固体氧化物燃料电池三相界面附近氧空位传输的影响. 物理学报, doi: 10.7498/aps.70.20210012
    [7] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, doi: 10.7498/aps.70.20202130
    [8] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, doi: 10.7498/aps.69.20201227
    [9] 徐晗, 张璐, 党政. 固体氧化物燃料电池模式阳极内传输与电化学反应耦合机理. 物理学报, doi: 10.7498/aps.69.20191697
    [10] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, doi: 10.7498/aps.68.20190394
    [11] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, doi: 10.7498/aps.67.20181524
    [12] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, doi: 10.7498/aps.66.048101
    [13] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, doi: 10.7498/aps.63.198201
    [14] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, doi: 10.7498/aps.63.148102
    [15] 李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华. 锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究. 物理学报, doi: 10.7498/aps.62.098201
    [16] 胡衡, 胡晓君, 白博文, 陈小虎. 退火时间对硼掺杂纳米金刚石薄膜微结构和电化学性能的影响. 物理学报, doi: 10.7498/aps.61.148101
    [17] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, doi: 10.7498/aps.61.156103
    [18] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, doi: 10.7498/aps.60.058201
    [19] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, doi: 10.7498/aps.59.2109
    [20] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, doi: 10.7498/aps.59.8226
计量
  • 文章访问数:  315
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-21
  • 修回日期:  2025-03-29
  • 上网日期:  2025-04-02

/

返回文章
返回