-
在全球能源格局深度调整与环境问题严峻挑战的双重背景下, 固体氧化物燃料电池(SOFC)凭借其诸多卓越特性, 成为高效清洁能量转换技术的研究焦点. SOFC的电化学性能受到气流流型、流速及工作电压等多种因素影响, 准确分析电池的电化学指标随各因素的变化情况, 是提出电池高效反应设计方案的基础. 因此, 本研究建立了SOFC的三维多场耦合模型, 研究了各因素间耦合作用对电池电化学性能的影响规律. 研究结果表明, 随着工作电压的降低, 电池的电化学反应速率显著提高, 气体摩尔分数梯度增大, 电解质电流密度分布不均性增强. 对于低电压工况, 交叉流流型展现出更好的电化学性能优势, 其功率密度曲线在不同电流密度区间均占据领先地位. 随着流道气体流速的提升, 电池的输出功率密度曲线呈上升趋势, 后续因阴极反应渐趋饱和, 流速提升对功率密度增长的推动作用逐渐弱化. 本研究揭示了流型、流速与电压的耦合作用对SOFC电化学性能的影响, 为SOFC的商业化应用提供指导.Under the dual background of deep adjustment of global energy pattern and severe challenges of environmental problems, solid oxide fuel cell (SOFC) has become the focus of research on efficient and clean energy conversion technology due to its many excellent characteristics. The electrochemical performance of SOFC is affected by various factors such as gas flow pattern (co-flow, counter-flow, cross-flow), flow rate (cathode and anode channel gases), and operating voltage. Accurately analysing the variation of electrochemical indexes with each factor is the basis for proposing the design scheme of high efficiency reaction of the cell. Therefore, a three-dimensional multi-field coupling model of SOFC is established in this study, and the model parameters and boundary conditions covering electrochemistry, gas flow, substance diffusion, etc. are set to study the influence of the coupling between factors on the electrochemical performance of the cell. These results show that with the decrease of operating voltage, the electrochemical reaction rate of the cell increases significantly, the gas mole fraction gradient increases, and the inhomogeneity of the electrolyte current density distribution is enhanced. Under low-voltage operating conditions, the cross-flow flow pattern shows better electrochemical performance advantages, and its power density profile takes the lead in different current density intervals. With the increase of the flow rate of the flow channel gas, the output power density curve of the cell shows an overall upward trend, and then the driving effect of the flow rate increase on the power density increase is gradually weakened due to the saturated cathodic reaction. This study reveals the influence of the coupling of flow pattern, flow rate and voltage on the electrochemical performance of SOFC, and provides guidance for the commercial application of SOFC.
-
Keywords:
- solid oxide fuel cells /
- airflow pattern /
- multi-field coupling /
- electrochemical performance
-
图 1 SOFC几何结构和有限元模型 (a) 顺流/逆流形式的几何结构; (b) 交叉流形式的几何结构; (c) 顺流/逆流形式的有限元模型; (d) 交叉流形式的有限元模型
Fig. 1. Geometry structure and finite element model of SOFC: (a) Geometry structure of co-flow/counter-flow patterns; (b) geometry structure of cross-flow pattern; (c) finite element model of co-flow/counter-flow patterns; (d) finite element model of cross-flow pattern.
图 4 顺流情况下SOFC电解质电流密度分布 (a)不同电压下电解质电流密度最大值与最小值曲线图; (b)电压为0.9 V时电解质电流密度云图; (c)电压为0.6 V时电解质电流密度云图; (d)电压为0.3 V时电解质电流密度云图
Fig. 4. SOFC electrolyte current density distribution in the case of downstream: (a) Plot of maximum and minimum electrolyte current density at different voltages; (b) electrolyte current density cloud at voltage of 0.9 V; (c) electrolyte current density cloud at voltage of 0.6 V; (d) electrolyte current density cloud at voltage of 0.3 V.
几何参数 数值 电池长度/mm 20.000 电池宽度/mm 20.000 流道高度/mm 1.000 流道宽度/mm 1.500 肋宽/mm 1.000 阳极和阴极连接体厚度/mm 2.000 阳极扩散层厚度/mm 0.015 阳极厚度/mm 0.400 阴极扩散层厚度/mm 0.020 阴极厚度/mm 0.050 电解质厚度/mm 0.010 参数 数值 阳极平衡电位/V 0 电池工作电压/V 0.5 阳极交换电流密度/(A·cm–2) 5 阴极交换电流密度/(A·cm–2) 2 阳极活性比表面积/m–1 1⊆105 阴极活性比表面积/m-1 1⊆105 电解质电导率/(S·m–1) 5 阳极电导率/(S·m–1) 1000 阴极电导率/(S·m–1) 1000 阳极扩散层电导率/(S·m–1) 8.5⊆105 阴极扩散层电导率/(S·m–1) 7700 集流体电导率/(S·m–1) 1.4⊆106 参数 数值 参考扩散率/(m2·s–1) 3.16×10–8 燃料气孔隙体积分数/% 40 氧化气孔隙体积分数/% 40 氢气摩尔质量/(g·mol–1) 2 氧气摩尔质量/(g·mol–1) 32 水蒸气摩尔质量/(g·mol–1) 18 氮气摩尔质量/(g·mol–1) 28 -
[1] Minh N Q, Takahashi T 1995 Science and Technology of Ceramic Fuel Cells (Amsterdam: Elsevier Science) p147
[2] Singhal S C, Kendall K 2002 Mater. Today 5 55
[3] 申双林, 张小坤, 万兴文, 郑克晴, 凌意瀚, 王绍荣 2022 物理学报 71 164401
Google Scholar
Shen S L, Zhang X K, Wan X W, Zheng K Q, Ling Y H, Wang S R 2022 Acta Phys. Sin. 71 164401
Google Scholar
[4] 徐晗, 张璐, 党政 2020 物理学报 69 098801
Google Scholar
Xu H, Zhang L, Dang Z 2020 Acta Phys. Sin. 69 098801
Google Scholar
[5] 李凯, 李霄, 李箭, 谢佳苗 2019 无机材料学报 34 611
Google Scholar
Li K, Li X, Li J, Xie J M 2019 J. Inorg. Mater. 34 611
Google Scholar
[6] Su Y, Zhu D Y, Zhang T T, Zhang Y R, Han W P, Zhang J, Ramakrishna S, Long Y Z 2022 Chin. Phys. B 31 057305
Google Scholar
[7] Al-Masri A, Peksen M, Blum L, Stolten D 2014 Appl. Energy 135 539
Google Scholar
[8] Razbani O, Assadi M, Andersson M 2013 Int. J. Hydrogen Energy 38 10068
Google Scholar
[9] Schluckner C, Subotic’ V, Lawlor V, Hochenauer C 2014 Int. J. Hydrogen Energy 39 19102
Google Scholar
[10] Schluckner C, Subotic ́ V, Lawlor V, Hochenauer C 2015 Int. J. Hydrogen Energy 40 10943
Google Scholar
[11] Danilov V A, Tade M O 2009 Int. J. Hydrogen Energy 34 8998
Google Scholar
[12] Haberman B A, Young J B 2004 Int. J. Heat Mass Transfer. 47 3617
Google Scholar
[13] Lu P Z, Wei S L, Du Z H, Ma W D, Ni S D 2024 Int. J. Heat Mass Transfer. 229 125708
Google Scholar
[14] Zhang Z G, Yue D T, Yang G G, Chen J F, Zheng Y F, Miao H, Wang W G, Yuan J L, Huang N B 2015 Int. J. Heat Mass Transfer. 84 942
Google Scholar
[15] Andersson M, Paradis H, Yuan J L, Sunde’n B 2013 Electrochim. Acta 109 881
Google Scholar
[16] Sohn S, Baek S. M, Nam J. H, Kim C-J 2016 Int. J. Hydrogen Energy 41 5582
Google Scholar
[17] Wang G L, Yang Y Z, Zhang H O, Xia W S 2007 J. Power Sources 167 398
Google Scholar
[18] Choudhary T, Sanjay 2016 Int. J. Hydrogen Energy 41 10212
Google Scholar
[19] Tan W C, Iwai H, Kishimoto M, Yoshida H 2018 J. Power Sources 400 135
Google Scholar
[20] William J, Sembler, Kumar S 2011 J. Fuel Cell Sci. Technol. 2 021007
[21] Park J M, Kim D Y, Baek J D, Yoon Y J, Su P C, Lee S H 2018 Energies 11 473
Google Scholar
[22] Li Z, Yang G G, Cui D A, Li S, Shen Q W, Zhang G L, Zhang H P 2022 J. Power Sources. 522 230981
Google Scholar
[23] Zhan R B, Wang Y, Ni M, Zhang G B, Du Q, Jiao K 2020 Int. J. Hydrogen Energy 45 6897
Google Scholar
[24] Sawangtong W, Dunnimit P, Wiwatanapataphee B, Sawangtong P 2024 Part. Diff. Eq. Appl. Math. 11 100890
[25] Li J S, Zhang J C, Zhang R 2025 J. Comput. Appl. Math. 460 116411
Google Scholar
[26] Shirsat V R, Vaidya P D, Dalvi V H, Singhal R. S, Kelkar A K, Joshi J B 2025 Sep. Purif. Technol. 354 129215
Google Scholar
[27] Tan W C, Iwai H, Kishimoto M, Yoshida H 2018 J. Power Sources 400 135
Google Scholar
[28] Nerat M, Juric ̌ic ́ D 2016 Int. J. Hydrogen Energy 41 3613
Google Scholar
[29] Chaudhary T N, Saleem U, Chen B 2019 Int. J. Hydrogen Energy 44 8425
Google Scholar
[30] Wang Y, Zhan R B, Qin Y Z, Zhang G B, Du Q, Jiao K 2018 Int. J. Hydrogen Energy 43 20059
Google Scholar
[31] 刘艺辉 2023 硕士学位论文(大连: 大连海事大学)
Liu Y H 2023 M. S. Thesis (Dalian: Dalian Maritime University
计量
- 文章访问数: 315
- PDF下载量: 8
- 被引次数: 0