搜索

x
中国物理学会期刊

气流流型和流速耦合作用下固体氧化物燃料电池电化学性能

CSTR: 32037.14.aps.74.20250096

Electrochemical properties of solid oxide fuel cells under the coupling effect of airflow pattern and airflow velocity

CSTR: 32037.14.aps.74.20250096
PDF
PDF English Version
HTML
导出引用
  • 在全球能源格局深度调整与环境问题严峻挑战的双重背景下, 固体氧化物燃料电池(SOFC)凭借其诸多卓越特性, 成为高效清洁能量转换技术的研究焦点. SOFC的电化学性能受到气流流型、流速及工作电压等多种因素影响, 准确分析电池的电化学指标随各因素的变化情况, 是提出电池高效反应设计方案的基础. 因此, 本研究建立了SOFC的三维多场耦合模型, 研究了各因素间耦合作用对电池电化学性能的影响规律. 研究结果表明, 随着工作电压的降低, 电池的电化学反应速率显著提高, 气体摩尔分数梯度增大, 电解质电流密度分布不均性增强. 对于低电压工况, 交叉流流型展现出更好的电化学性能优势, 其功率密度曲线在不同电流密度区间均占据领先地位. 随着流道气体流速的提升, 电池的输出功率密度曲线呈上升趋势, 后续因阴极反应渐趋饱和, 流速提升对功率密度增长的推动作用逐渐弱化. 本研究揭示了流型、流速与电压的耦合作用对SOFC电化学性能的影响, 为SOFC的商业化应用提供指导.

     

    Under the dual background of deep adjustment of global energy pattern and severe challenges of environmental problems, solid oxide fuel cell (SOFC) has become the focus of research on efficient and clean energy conversion technology due to its many excellent characteristics. The electrochemical performance of SOFC is affected by various factors such as gas flow pattern (co-flow, counter-flow, cross-flow), flow rate (cathode and anode channel gases), and operating voltage. Accurately analysing the variation of electrochemical indexes with each factor is the basis for proposing the design scheme of high efficiency reaction of the cell. Therefore, a three-dimensional multi-field coupling model of SOFC is established in this study, and the model parameters and boundary conditions covering electrochemistry, gas flow, substance diffusion, etc. are set to study the influence of the coupling between factors on the electrochemical performance of the cell. These results show that with the decrease of operating voltage, the electrochemical reaction rate of the cell increases significantly, the gas mole fraction gradient increases, and the inhomogeneity of the electrolyte current density distribution is enhanced. Under low-voltage operating conditions, the cross-flow flow pattern shows better electrochemical performance advantages, and its power density profile takes the lead in different current density intervals. With the increase of the flow rate of the flow channel gas, the output power density curve of the cell shows an overall upward trend, and then the driving effect of the flow rate increase on the power density increase is gradually weakened due to the saturated cathodic reaction. This study reveals the influence of the coupling of flow pattern, flow rate and voltage on the electrochemical performance of SOFC, and provides guidance for the commercial application of SOFC.

     

    目录

    /

    返回文章
    返回