搜索

x
中国物理学会期刊

基于脉管制冷机预冷的1 K大冷量低温系统

CSTR: 32037.14.aps.74.20250181

A high-capacity 1-K cryogenic system pre-cooled by pulse tube cryocooler

CSTR: 32037.14.aps.74.20250181
PDF
HTML
导出引用
  • 1 K低温系统是进一步实现mK温区及更低温度的基础, 广泛应用于量子计算、凝聚态物理研究、低温科学仪器等领域. 目前国内的1 K低温系统大多使用GM (Gifford-McMahon)制冷机进行预冷, 系统在实现更低振动控制、更低电噪声干扰、更低预冷温度和更高液化效率等方面存在一定难题, 而基于脉管制冷机预冷的1 K系统在解决这些问题方面具有先天优势. 本文发展了一台全国产化的4 K GM脉管制冷机, 获得了2.14 K的最低制冷温度, 并可同时提供1.5 W@4.2 K和45 W@45 K的制冷量. 将其作为预冷制冷机, 设计并搭建了1 K低温系统, 最终获得了1.1 K的最低制冷温度, 并可在1.6 K提供100 mW的制冷量. 本研究为后续开展更大冷量稀释制冷技术奠定了重要基础.

     

    A 1-K cryogenic system can provide a stable and necessary low-temperature environment for some fields such as quantum computing, condensed matter physics research, and cryogenic scientific instruments. Specifically, in the field of basic research, 1 K is an ideal condition for studying quantum phenomena in low-temperature physics, such as quantum Hall effect and topological phase transition; in the field of technical applications, 1 K is a necessary condition for some quantum devices, such as superconducting quantum interferometers and single-photon detectors, to achieve high-sensitivity operation; in the field of ultra-low temperature technology, 1 K is the pre-cooling stage of refrigeration technologies, such as dilution refrigerators, and is also the basis for further achieving mK temperature ranges and lower temperatures. At present, in most of domestic 1-K systems, GM (Gifford-McMahon) cryocoolers are used for pre-cooling. These systems encounter some difficulties in achieving lower vibration control, lower electrical noise interference, lower pre-cooling temperature, and higher liquefaction efficiency. The 1-K systems based on pulse tube cryocoolers pre-cooling have inherent advantages in solving these problems. In this work, a 4-K GM-type pulse tube cryocooler is first developed by using a domestic helium compressor and a developed rotary valve, and the cold-end heat exchanger and the room-temperature phase shifters are redesigned in order to achieve a minimum cooling temperature of 2.14 K, and provide 1.5 W at 4.2 K and 45 W at 45 K cooling capacity simultaneously. With the home-made pulse tube cryocooler as the pre-cooling stage, a 1-K cryogenic system is further constructed. By designing key components such as JT flow resistance, combined thermal switch, and anti-superflow structure, a minimum cooling temperature of 1.1 K is achieved, with a cooling capacity of 100 mW at 1.6 K. This study lays an important foundation for subsequently developing dilution refrigerators with larger cooling capacity.

     

    目录

    /

    返回文章
    返回