搜索

x
中国物理学会期刊

基于MoS2/沸石咪唑酯骨架-67异质结构提高SERS检测性能

CSTR: 32037.14.aps.74.20250410

Improvement of SERS detection performance based on MoS2/Zeolitic imidazolate framework-67 heterostructure

CSTR: 32037.14.aps.74.20250410
PDF
HTML
导出引用
  • 地球上丰富的二硫化钼(MoS2)作为一种有前景的表面增强拉曼光谱(SERS)基底引起了人们的广泛关注, 但由于其半导体特性而限制了其发展. 因此, 本文设计了一种MoS2/沸石咪唑酯骨架-67(ZIF-67)异质结构作为SERS基底, 该基底具有优异的灵敏度, 增强因子可达6.68×106. 此外, 利用MoS2/ZIF-67对胆红素进行无标记检测, 检测限低至10–10 mol/L. 同时, 该基底暴露在空气中4个月后, SERS性能基本保持不变, 表明该基底具有较高的稳定性和可重复使用性. 该基底优秀的性能主要是由于MoS2的垂直分布结构能暴露出更多的活性位点. 同时, ZIF-67具有较大的比表面积和丰富的孔洞结构, 这也为分子提供了大量的吸附位点. 此外, 内部电荷转移诱导了高比例稳定1T相的形成, 从而提高了电导率. 本文为合理设计用于高灵敏SERS检测的无贵金属材料提供了有价值的参考.

     

    Earth-abundant molybdenum disulfide (MoS2), as a promising substrate for surface-enhanced Raman spectroscopy (SERS), has attracted considerable attention. Naturally occurring MoS2 primarily exists in the semiconducting 2H phase, but its SERS performance is limited because active sites are typically confined to its edges. Furthermore, the irregular agglomeration of MoS2 can lead to performance degradation, making natural semiconducting material unsuitable for practical applications. Therefore, enhancing the performance of MoS2 in the field of SERS is of great significance. Metal-organic frameworks (MOFs) are ideal materials for building efficient SERS substrates due to their tunable pore structures. Among various MOF materials, zeolitic imidazolate frameworks (ZIFs) have aroused significant interest due to their well-defined polyhedral structures, homogeneity, and small particle sizes. Therefore, in this study, MoS2/zeolitic imidazolate framework-67 (ZIF-67) heterostructures are prepared by the hydrothermal method as SERS substrates, which exhibits exceptionaly high sensitivity to rhodamine 6G with an enhancement factor of up to 6.68×106. Moreover, after SERS is exposed to air for four months, its performance remains almost unchanged, demonstrating high stability and reusability. To evaluate the actual detection ability of this substrate, bilirubin is selected as the analyte, which is a clinically relevant metabolic waste. Since both high and low concentrations of free bilirubin can lead to cardiovascular and cerebrovascular diseases, accurate monitoring of bilirubin levels is crucial for diagnosing bilirubin-induced disorders. Using the MoS2/ZIF-67 substrate, the label-free detection of bilirubin is achieved with a limit of detection as low as 10–10 mol/L. The outstanding performance of this substrate can be attributed to the vertically aligned MoS2 nanostructure, which exposes more active sites. Additionally, ZIF-67 provides a high specific surface area and abundant porous structures, providing numerous adsorption sites for target molecules. Furthermore, the internal charge transfer facilitates the formation of a highly conductive 1T phase, thereby improving electrical conductivity. This work provides valuable insights into the rational designing of noble-metal-free materials for highly sensitive SERS detection.

     

    目录

    /

    返回文章
    返回