搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MoS2/沸石咪唑酯骨架–67异质结构提高SERS检测性能

李滨江 张禹晨 李威 王雪华

引用本文:
Citation:

基于MoS2/沸石咪唑酯骨架–67异质结构提高SERS检测性能

李滨江, 张禹晨, 李威, 王雪华

Improvement of SERS detection performance based on MoS2/Zeolitic imidazolate framework-67 heterostructure

LI Binjiang, ZHANG Yuchen, LI Wei, WANG Xuehua
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 地球上丰富的二硫化钼(MoS2)作为一种有前景的表面增强拉曼光谱(SERS)基底引起了人们的广泛关注, 但由于其半导体特性而限制了其发展. 因此, 本文设计了一种MoS2/沸石咪唑酯骨架-67(ZIF-67)异质结构作为SERS基底, 该基底具有优异的灵敏度, 增强因子可达6.68×106. 此外, 利用MoS2/ZIF-67对胆红素进行无标记检测, 检测限低至10–10 mol/L. 同时, 该基底暴露在空气中4个月后, SERS性能基本保持不变, 表明该基底具有较高的稳定性和可重复使用性. 该基底优秀的性能主要是由于MoS2的垂直分布结构能暴露出更多的活性位点. 同时, ZIF-67具有较大的比表面积和丰富的孔洞结构, 这也为分子提供了大量的吸附位点. 此外, 内部电荷转移诱导了高比例稳定1T相的形成, 从而提高了电导率. 本文为合理设计用于高灵敏SERS检测的无贵金属材料提供了有价值的参考.
    Earth-abundant molybdenum disulfide (MoS2), as a promising substrate for surface-enhanced Raman spectroscopy (SERS), has attracted considerable attention. Naturally occurring MoS2 primarily exists in the semiconducting 2H phase, but its SERS performance is limited because active sites are typically confined to its edges. Furthermore, the irregular agglomeration of MoS2 can lead to performance degradation, making natural semiconducting material unsuitable for practical applications. Therefore, enhancing the performance of MoS2 in the field of SERS is of great significance. Metal-organic frameworks (MOFs) are ideal materials for building efficient SERS substrates due to their tunable pore structures. Among various MOF materials, zeolitic imidazolate frameworks (ZIFs) have aroused significant interest due to their well-defined polyhedral structures, homogeneity, and small particle sizes. Therefore, in this study, MoS2/zeolitic imidazolate framework-67 (ZIF-67) heterostructures are prepared by the hydrothermal method as SERS substrates, which exhibits exceptionaly high sensitivity to rhodamine 6G with an enhancement factor of up to 6.68×106. Moreover, after SERS is exposed to air for four months, its performance remains almost unchanged, demonstrating high stability and reusability. To evaluate the actual detection ability of this substrate, bilirubin is selected as the analyte, which is a clinically relevant metabolic waste. Since both high and low concentrations of free bilirubin can lead to cardiovascular and cerebrovascular diseases, accurate monitoring of bilirubin levels is crucial for diagnosing bilirubin-induced disorders. Using the MoS2/ZIF-67 substrate, the label-free detection of bilirubin is achieved with a limit of detection (LOD) as low as 10–10 mol/L. The outstanding performance of this substrate can be attributed to the vertically aligned MoS2 nanostructure, which exposes more active sites. Additionally, ZIF-67 provides a high specific surface area and abundant porous structures, providing numerous adsorption sites for target molecules. Furthermore, the internal charge transfer facilitates the formation of a highly conductive 1T phase, thereby improving electrical conductivity. This work provides valuable insights into the rational designing of noble-metal-free materials for highly sensitive SERS detection.
  • 图 1  ZIF-67, MoS2xMoS2/ZIF-67的合成流程示意图

    Fig. 1.  Schematic diagram of the synthesis of ZIF-67, MoS2 and xMoS2/ZIF-67.

    图 2  MoS2, ZIF-67和MoS2/ZIF-67的(a) XRD图、(b)拉曼光谱和(c)傅里叶变换红外光谱

    Fig. 2.  (a) XRD patterns, (b) Raman spectra, and (c) FT-IR spectra of MoS2, ZIF-67 and MoS2/ZIF-67.

    图 3  基底的SEM, TEM和EDS图 (a) MoS2, (b) ZIF-67和(c) 0.3 MoS2/ZIF-67的SEM图像; (d) MoS2, (e) ZIF-67和(f) 0.3 MoS2/ZIF-67的TEM图像; (g) 0.3 MoS2/ZIF-67的HRTEM; (h) 图(g)中蓝色矩形区域放大后的图片; (i)—(l) Co, Mo, S, O的EDS元素映射图

    Fig. 3.  SEM images of (a) MoS2, (b) ZIF-67 and (c) 0.3 MoS2/ZIF-67; TEM images of (d) MoS2, (e) ZIF-67 and (f) 0.3 MoS2/ZIF-67; (g) HRTEM of 0.3 MoS2/ZIF-67; (h) magnified domains of the blue rectangle; (i)–(l) EDS element mapping images of Co, Mo, S and O.

    图 4  基底的XPS图 (a) MoS2和0.3 MoS2/ZIF-67的Mo 3d谱、(c) S 2p谱和(d) O 1s谱; (b) MoS2和0.3 MoS2/ZIF-67的Co 2p谱   

    Fig. 4.  (a) Mo 3d spectrum, (c) S 2p spectrum and (d) O 1s spectrum of MoS2 and 0.3 MoS2/ZIF-67; (b) Co 2p spectrum of MoS2 and 0.3 MoS2/ZIF-67.

    图 5  基底的拉曼光谱和SERS性能图 (a) R6G(10–3 mol/L)吸附在MoS2, ZIF-67和xMoS2/ZIF-67上的SERS谱图; (b) 0.3 MoS2/ZIF-67基底上不同浓度R6G的SERS光谱; (c) 1653 cm–1处SERS强度与对数浓度的线性关系; (d) 0.3 MoS2/ZIF-67的可重复性、(e)循环性和(f)稳定性表征

    Fig. 5.  (a) SERS spectra of R6G (10–3 mol/L) adsorbed on MoS2, ZIF-67 and xMoS2/ZIF-67; (b) SERS spectra of R6G of various concentrations enhanced by 0.3 MoS2/ZIF-67; (c) linear relationship of SERS intensities at 1653 cm–1 versus logarithm of concentration; (d) reproducibility, (e) cyclicity and (f) stability of 0.3 MoS2/ZIF-67.

    图 6  R6G-0.3 MoS2/ZIF-67的能级和电荷转移示意图

    Fig. 6.  Diagram of the energy level and charge transfer in the R6G-0.3 MoS2/ZIF-67.

    图 7  复合后的基底与非复合基底的SERS性能对比图 (a)不同浓度胆红素在0.3 MoS2/ZIF-67基底上的SERS光谱和(b) 1614 cm–1处信号强度与胆红素对数浓度的关系; (c)不同浓度胆红素在MoS2基底上的SERS光谱和(d) 1614 cm–1处信号强度与胆红素对数浓度的关系

    Fig. 7.  SERS spectra of (a) 0.3 MoS2/ZIF-67 and (c) MoS2 substrates with various concentrations of bilirubin. Plot of the intensity at 1614 cm–1 against the logarithmic concentration of bilirubin in the presence of (b) 0.3 MoS2/ZIF-67 and (d) MoS2.

  • [1]

    Odum E P 1969 Science 164 262Google Scholar

    [2]

    Guo Y, Liu Y 2022 J. Geog. Sci. 32 23Google Scholar

    [3]

    Zhang Y, Gao F, Wang D, Li Z, Wang X, Wang C, Zhang K, Du Y 2023 Coord. Chem. Rev. 475 214916Google Scholar

    [4]

    Li Y, Zhang J, Chen Q, Xia X, Chen M 2021 Adv. Mater. 33 2100855Google Scholar

    [5]

    Hou H, Anichini C, Samorì P, Criado A, Prato M 2022 Adv. Funct. Mater. 32 2207065Google Scholar

    [6]

    Li J, Chen C, Lv Z, Ma W, Wang M, Li Q, Dang J 2023 J. Mater. Sci. Technol. 145 74Google Scholar

    [7]

    Gong C, Li W, Lei Y, He X, Chen H, Du X, Fang W, Wang D, Zhao L 2022 Composites Part B 236 109823Google Scholar

    [8]

    Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J-M, Mannhart J 2007 Science 317 1196Google Scholar

    [9]

    Ohtomo A, Hwang H Y 2004 Nature 427 423Google Scholar

    [10]

    Chen W, Zhu X, Wang R, Wei W, Liu M, Dong S, Ostrikov K K, Zang S Q 2022 J. Energy Chem. 75 16Google Scholar

    [11]

    Xia T, Zhou L, Gu S, Gao H, Ren X, Li S, Wang R, Guo H 2021 Mater. Des. 211 110165Google Scholar

    [12]

    Wang H, Niu Z, Peng Z, Wu X, Gao C, Zhao S, Kim Y D, Wu H, Du X, Liu Z, Li B 2022 ACS Appl. Mater. Interfaces 14 9116Google Scholar

    [13]

    Xu H, Zhu J, Ma Q, Ma J, Bai H, Chen L, Mu S 2021 Micromachines 12 240Google Scholar

    [14]

    Cao Y 2021 ACS Nano 15 11014Google Scholar

    [15]

    He H, Li X, Huang D, Luan J, Liu S, Pang W K, Sun D, Tang Y, Zhou W, He L, Zhang C, Wang H, Guo Z 2021 ACS Nano 15 8896Google Scholar

    [16]

    Peng H, Zhou K, Jin Y, Zhang Q, Liu J, Wang H 2022 Chem. Eng. J. 429 132477Google Scholar

    [17]

    Wang H, Fu W, Yang X, Huang Z, Li J, Zhang H, Wang Y 2020 J. Mater. Chem. A 8 6926Google Scholar

    [18]

    Huang Z, Yuan S, Zhang T, Cai B, Xu B, Lu X, Fan L, Dai F, Sun D 2020 Appl. Catal. , B 272 118976Google Scholar

    [19]

    Zhang X, Zhang S, Tang Y, Huang X, Pang H 2022 Composites Part B 230 109532Google Scholar

    [20]

    Yang J, Zhang C, Niu Y, Huang J, Qian X, Wong K-Y 2021 Chem. Eng. J. 409 128293Google Scholar

    [21]

    Wu Y, Wang Z, Liang M, Cheng H, Li M, Liu L, Wang B, Wu J, Prasad Ghimire R, Wang X, Sun Z, Xue S, Qiao Q 2018 ACS Appl. Mater. Interfaces 10 17883Google Scholar

    [22]

    Zhou L, Zhuang Z, Zhao H, Lin M, Zhao D, Mai L 2017 Adv. Mater. 29 1602914Google Scholar

    [23]

    Quan Y, Li J, Hu M, Wei M, Yang J, Gao M, Liu Y 2022 Appl. Surf. Sci. 598 153750Google Scholar

    [24]

    Li M, Cai B, Tian R, Yu X, Breese M B H, Chu X, Han Z, Li S, Joshi R, Vinu A, Wan T, Ao Z, Yi J, Chu D 2021 Chem. Eng. J. 409 128158Google Scholar

    [25]

    Xu J, Cheng C, Shang S, Gao W, Zeng P, Jiang S 2020 ACS Appl. Mater. Interfaces 12 49452Google Scholar

    [26]

    Li Q, Huang F, Li S, Zhang H, Yu X 2022 Small 18 2104323Google Scholar

    [27]

    Sundara Venkatesh P, Kannan N, Ganesh Babu M, Paulraj G, Jeganathan K 2022 Int. J. Hydrogen Energy 47 37256Google Scholar

    [28]

    Xu J, Shang S, Gao W, Zeng P, Jiang S 2021 Cellulose 28 7389Google Scholar

    [29]

    Chen Y, Meng G, Yang T, Chen C, Chang Z, Kong F, Tian H, Cui X, Hou X, Shi J 2022 Chem. Eng. J. 450 138157Google Scholar

    [30]

    Rafiei S, Tangestaninejad S, Horcajada P, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Kardanpour R, Zadehahmadi F 2018 Chem. Eng. J. 334 1233Google Scholar

    [31]

    Chang J, Wang Y, Chen L, Wu D, Xu F, Bai Z, Jiang K, Gao Z 2020 Int. J. Hydrogen Energy 45 12787Google Scholar

    [32]

    Hou B, Wu J 2020 Dalton Trans. 49 17621Google Scholar

    [33]

    Leng X, Wang Y, Wang F 2019 Adv. Mater. Interfaces 6 1900010Google Scholar

    [34]

    Mohammadpour E, Asadpour-Zeynali K 2020 Microchem J. 157 104939Google Scholar

    [35]

    Hou X, Zhou H, Zhao M, Cai Y, Wei Q 2020 ACS Sustainable Chem. Eng. 8 5724Google Scholar

    [36]

    Liu Z, Gao Z, Liu Y, Xia M, Wang R, Li N 2017 ACS Appl. Mater. Interfaces 9 25291Google Scholar

    [37]

    Li X, Lü X, Li N, Wu J, Zheng Y-Z, Tao X 2019 Appl. Catal. , B 243 76Google Scholar

    [38]

    Mu X, Zhu Y, Gu X, Dai S, Mao Q, Bao L, Li W, Liu S, Bao J, Mu S 2021 J. Energy Chem. 62 546Google Scholar

    [39]

    Lei Z, Zhan J, Tang L, Zhang Y, Wang Y 2018 Adv. Energy Mater. 8 1703482Google Scholar

    [40]

    Gao B, Zhao Y, Du X, Li D, Ding S, Li Y, Xiao C, Song Z 2021 Chem. Eng. J. 411 128567Google Scholar

    [41]

    Kochat V, Apte A, Hachtel J A, Kumazoe H, Krishnamoorthy A, Susarla S, Idrobo J C, Shimojo F, Vashishta P, Kalia R, Nakano A, Tiwary C S, Ajayan P M 2017 Adv. Mater. 29 1703754Google Scholar

    [42]

    Sim D M, Han H J, Yim S, Choi M J, Jeon J, Jung Y S 2017 ACS Omega 2 4678Google Scholar

    [43]

    Nguyen D C, Tran D T, Doan T L L, Kim D H, Kim N H, Lee J H 2020 Adv. Energy Mater. 10 1903289Google Scholar

    [44]

    Zhu H, Zhang J, Yanzhang R, Du M, Wang Q, Gao G, Wu J, Wu G, Zhang M, Liu B, Yao J, Zhang X 2015 Adv. Mater. 27 4752Google Scholar

    [45]

    Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A 2021 Adv. Energy Mater. 11 2101324Google Scholar

    [46]

    Ganesan P, Sivanantham A, Shanmugam S 2018 J. Mater. Chem. A 6 1075Google Scholar

    [47]

    Li W, Liu J, Guo P, Li H, Fei B, Guo Y, Pan H, Sun D, Fang F, Wu R 2021 Adv. Energy Mater. 11 2102134Google Scholar

    [48]

    Sun H, Yao M, Song Y, Zhu L, Dong J, Liu R, Li P, Zhao B, Liu B 2019 Nanoscale 11 21493Google Scholar

    [49]

    Wang X, Han Y, Liu Y, Yu Y, Ma J, Yang T, Hu J, Huang H 2023 Int. J. Hydrogen Energy 48 3048Google Scholar

    [50]

    Wang Y, Zeng C, Zhang Y, Su R, Yang D, Wang Z, Wu Y, Pan H, Zhu W, Hu W, Liu H, Yang R 2022 Mater. Today Phys. 22 100600Google Scholar

    [51]

    Sun S, Zheng J, Sun R, Wang D, Sun G, Zhang X, Gong H, Li Y, Gao M, Li D, Xu G, Liang X 2022 Nanomaterials 12 896Google Scholar

    [52]

    Gupta J D, Jangra P, Mishra A K 2025 ACS Appl. Nano Mater. 8 7449Google Scholar

    [53]

    Lombardi J R, Birke R L 2014 J. Phys. Chem. C 118 11120

  • [1] 戴硕, 李振, 张超, 郁菁, 赵晓菲, 吴阳, 满宝元. 竖直取向MoS2纳米片复合Ag基底的表面增强拉曼光谱效应及机制. 物理学报, doi: 10.7498/aps.74.20241671
    [2] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, doi: 10.7498/aps.71.20220738
    [3] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, doi: 10.7498/aps.71.20220015
    [4] 杨文, 丁倩瑶, 翟冬梅, 薄开雯, 冯艳艳, 文婕, 何方. 中空笼状多孔结构镍钴层状氢氧化物的制备及其电化学性能. 物理学报, doi: 10.7498/aps.71.20211100
    [5] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, doi: 10.7498/aps.70.20202163
    [6] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响. 物理学报, doi: 10.7498/aps.70.20210816
    [7] 武敏, 费宏明, 林瀚, 赵晓丹, 杨毅彪, 陈智辉. 基于二维六方氮化硼材料的光子晶体非对称传输异质结构设计. 物理学报, doi: 10.7498/aps.70.20200741
    [8] 杜建宾, 冯志芳, 张倩, 韩丽君, 唐延林, 李奇峰. 外电场作用下MoS2的分子结构和电子光谱. 物理学报, doi: 10.7498/aps.68.20190781
    [9] 孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐. 等离子体谐振腔对二硫化钼的荧光增强效应. 物理学报, doi: 10.7498/aps.68.20191121
    [10] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, doi: 10.7498/aps.67.20181255
    [11] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质. 物理学报, doi: 10.7498/aps.67.20180213
    [12] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, doi: 10.7498/aps.66.087101
    [13] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, doi: 10.7498/aps.65.176201
    [14] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, doi: 10.7498/aps.65.127101
    [15] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, doi: 10.7498/aps.64.187101
    [16] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征. 物理学报, doi: 10.7498/aps.64.016102
    [17] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, doi: 10.7498/aps.63.217802
    [18] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, doi: 10.7498/aps.62.206101
    [19] 张阳, 顾书林, 叶建东, 黄时敏, 顾然, 陈斌, 朱顺明, 郑有炓. ZnMgO/ZnO异质结构中二维电子气的研究. 物理学报, doi: 10.7498/aps.62.150202
    [20] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, doi: 10.7498/aps.61.227102
计量
  • 文章访问数:  205
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-29
  • 修回日期:  2025-04-20
  • 上网日期:  2025-04-24

/

返回文章
返回