搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ICl+分子离子激发态的包含自旋-轨道耦合效应的理论研究

李瑞 窦荣龙 高婷 李奇楠 宋超群

引用本文:
Citation:

ICl+分子离子激发态的包含自旋-轨道耦合效应的理论研究

李瑞, 窦荣龙, 高婷, 李奇楠, 宋超群
cstr: 32037.14.aps.74.20250510

Theoretical study on excited states of ICl+ molecular ion considering spin-orbit coupling

LI Rui, DOU Ronglong, GAO Ting, LI Qinan, SONG Chaoqun
cstr: 32037.14.aps.74.20250510
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用高精度的多参考组态相互作用方法研究了ICl+分子离子的电子结构. 在计算过程中, 通过考虑Davidson修正、自旋-轨道耦合效应和芯-价电子关联提高计算结果的准确性. 获得了两条能量最低的解离极限相关的21个Λ-S态和42个Ω态势能曲线. 在计算的势能曲线基础上, 拟合了束缚态的光谱常数, 这些理论光谱常数与已知的实验结果吻合较好. 研究了ICl+分子离子的偶极矩, 并通过相同对称性电子态22Σ+/32Σ+和22Π/32Π在交叉区域中主要电子组态成分的变化阐明了偶极矩的变化规律. 计算了与22Π, 32Π, 12Δ, 22Δ态相关的自旋-轨道耦合矩阵元. 借助于22Π, 32Π, 12Δ, 22Δ态及邻近电子态的势能曲线, 讨论了相应的预解离通道. 最后对ICl+分子离子激发态至基态的跃迁性质展开了研究. 基于计算所得的跃迁偶极矩和Franck-Condon因子, 给出了激发态较低振动能级的自发辐射寿命. 本文数据集可在https://doi.org/10.57760/sciencedb.j00213.00140中访问获取.
    The electronic structure of the ICl+ molecular ion is investigated by using high-level multireference configuration interaction (MRCI) method. To improve computational accuracy, Davidson corrections, spin-orbit coupling (SOC), and core-valence electron correlations effects are incorporated into the calculations. The potential energy curves (PECs) of 21 Λ-S states associated with the two lowest dissociation limits I+(1Dg)+Cl(2Pu) and I+(3Pg)+Cl(2Pu) are obtained. The dipole moments (DMs) of the 21 Λ-S states of ICl+ are systematically studied, and the variations of DMs of the identical symmetry state (22Σ+/32Σ+ and 22Π/32Π) in the avoided crossing regions are elucidated by analyzing the dominant electronic configuration. When considering the SOC effect, the Λ-S states with the same Ω components may form new avoided crossing point, making the PECs more complex. With the help of calculated SOC matrix element, the interaction between crossing states can be elucidated. Spin-orbit coupling matrix elements involving the 22Π, 32Π, 12Δ and 22Δ states are calculated. By analyzing potential energy curves of these states and the nearby electronic states, the possible predissociation channels for 22Π, 32Π, 12Δ and 22Δ states are provided. Based on the computed PECs, the spectroscopic constants of bound Λ-S and Ω states are determined. The comparison of the spectroscopic constants between Λ-S and Ω states indicates that the SOC effect has an obvious correction to the spectroscopic properties of low-lying states. Finally, the transition properties between excited states and the ground state are studied. Based on the computed transition dipole moments and Franck-Condon factors, radiative lifetimes for the low-lying vibrational levels of excited states are evaluated. All the data presented in this paper are openly available at https://doi.org/10.57760/sciencedb.j 00213.00140.
      通信作者: 李瑞, ruili06@mails.jlu.edu.cn
    • 基金项目: 黑龙江省自然科学基金(批准号: LH2022A026)、黑龙江省省属高等学校基本科研业务费科研项目(批准号: 145409330, 145309621)和国家自然科学基金(批准号: 42371113)资助的课题.
      Corresponding author: LI Rui, ruili06@mails.jlu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. LH2022A026), the Fundamental Research Funds in Heilongjiang Province Universities, China (Grant Nos. 145409330, 145309621), and the National Natural Science Foundation of China (Grant No. 42371113).
    [1]

    Sherwen T, Schmidt J A, Evans M J, Carpenter L J, Großmann K, Eastham S D, Jacob D J, Dix B, Koenig T K, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados-Roman C, Mahajan A S, Ordóñez C 2016 Atmos. Chem. Phys. 16 12239Google Scholar

    [2]

    Vogt R, Sander R, Glasow R V, Crutzen P J 1999 J. Atmos. Chem. 32 375Google Scholar

    [3]

    Calvert J G, Lindberg S E 2004 Atmos. Environ. 38 5087Google Scholar

    [4]

    Küpper F C, Feiters M C, Olofsson B, Kaiho T, Yanagida S, Zimmermann M B, Carpenter L J, Luther G W, Lu Z, Jonsson M, Kloo L 2011 Angew. Chem. Int. Ed. 50 11598Google Scholar

    [5]

    Evans S, Orchard A F 1971 Inorg. Chim. Acta. 5 81Google Scholar

    [6]

    Potts A W, Price W C 1971 Trans. Faraday Soc. 67 1242Google Scholar

    [7]

    Eland J H D 1979 J. Chem. Phys. 70 2926Google Scholar

    [8]

    Dibeler V H, Walker J A, McCulloh K E, Rosenstock H M 1971 Int. J. Mass Spectro. Ion Phys. 7 209Google Scholar

    [9]

    Venkateswarlu P 1975 Can. J. Phys. 53 812Google Scholar

    [10]

    Tuckett R P, Castellucci E, Bonneau M 1985 Chem. Phys. 92 43Google Scholar

    [11]

    Kaur D, Yencha A J, Donovan R J, Kvaran A, Hopkirk A 1993 Org. Mass Spectrom. 28 327Google Scholar

    [12]

    Yencha A J, Lopes M C A, King G C 2000 Chem. Phys. Lett. 325 559Google Scholar

    [13]

    Ridley T, Beattie D A, Cockett M C R, Lawley K P, Donovan R J 2002 Phys. Chem. Chem. Phys. 4 1398Google Scholar

    [14]

    Straub P A, McLean A D 1974 Theoret. Chim. Acta 32 227Google Scholar

    [15]

    Dyke J M, Josland G D, Snijders J G, Boerrigter P M 1984 Chem. Phys. 91 419.Google Scholar

    [16]

    Balasubramanian K 1985 Chem. Phys. 95 225Google Scholar

    [17]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wires Comput. Mol. Sci. 2 242Google Scholar

    [18]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [19]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [20]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [21]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61Google Scholar

    [25]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [26]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

    [27]

    Wu D L, Liu B K, Zhou W T, Chen J Y, Lai Z L, Liu B, Yan B 2025 Chin. Phys. B 34 043101Google Scholar

    [28]

    刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮 2025 物理学报 74 023101Google Scholar

    Liu M J, Tian Y L, Wang Y, Li X X, He X H, Gong T, Sun X C, Guo G Q, Qiu X B, Li C L 2025 Acta Phys. Sin. 74 023101Google Scholar

    [29]

    朱宇豪, 李瑞 2024 物理学报 73 053101Google Scholar

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101Google Scholar

    [30]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y 2024 Chin. Phys. B 33 053101Google Scholar

    [31]

    伍冬兰, 郭自依, 周俊杰, 阮文, 曾学锋, 谢安东 2022 物理学报 71 223101Google Scholar

    Wu D L, Guo Z Y, Zhou J J, Ruan W, Zeng X F, Xie A D 2022 Acta Phys. Sin. 71 223101Google Scholar

    [32]

    陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [33]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. IV) (New York: Van Nostrand Reinhold) p342

    [34]

    Moore C E 1971 Atomic Energy Levels (Washington (DC): National Bureau of Standards Publications

  • 图 1  ICl+分子离子的Λ-S态势能曲线

    Fig. 1.  Potential energy curves of the Λ-S states of ICl+ molecular ion.

    图 2  ICl+分子离子的Λ-S态偶极矩曲线 (a)双重态的偶极矩; (b)四重态的偶极矩

    Fig. 2.  Dipole moments curves of the Λ-S states of ICl+ molecular ion: (a) Dipole moment of the doublet state; (b) dipole moment of the quartet state.

    图 3  22Π/32Π (a)和22Σ+/32Σ+ (b)的组态权重 (c2)

    Fig. 3.  The R-dependent weights (c2) of the electronic configurations of 22Π/32Π (a) and 22Σ+/32Σ+ (b) states.

    图 4  交叉区域振动能级的放大视图

    Fig. 4.  An amplified view of crossing region with the corresponding vibrational levels.

    图 5  包含22Π, 12Δ态(a)和22Δ, 32Π态(b)的自旋-轨道耦合矩阵元随核间距的变化

    Fig. 5.  Variation curves of spin-orbit coupling matrix elements of 22Π, 12Δ states (a) and 22Δ, 32Π states (b) with internuclear distance.

    图 6  ICl+分子离子的Ω态势能曲线

    Fig. 6.  Potential energy curves of the Ω states of ICl+ molecular ion.

    图 7  ICl+分子离子跃迁偶极矩曲线

    Fig. 7.  Transition dipole moments curves of ICl+ molecular ion.

    表 1  ICl+分子离子Re附近的组态权重和垂直激发能

    Table 1.  Electronic configuration and vertical excitation energies of ICl+ molecular ion at Re.

    Λ-S 态 Re 附近的组态权重/% T/cm–1
    Χ2Π 22210σ211σ0443(91) 0
    $ {1^4}{\Sigma ^ - } $ 22210σ211σ1442(77)
    22210σ211σ1433(20)
    18885.3
    22Π 22210σ211σ0434(87)
    22210σ111σ1443(6)
    23660.8
    12Δ 22210σ211σ1442(67)
    22210σ211σ1433(29)
    25549.0
    12Σ+ 22210σ211σ1442(59)
    22210σ211σ1433(34)
    28700.8
    22Σ+ 22210σ111σ0444(94) 33963.0
    14Δ 22210σ211σ1433(99) 35589.7
    22Δ 22210σ211σ1433(96) 43617.4
    32Σ+ 22210σ211σ1433(95) 44332.0
    $ {3^2}{\Sigma ^ - } $ 22210σ211σ1433(67)
    22210σ111σ2442(22)
    22210σ211σ1442(9)
    52169.3
    32Π 22210σ211σ2441(48)
    22210σ211σ2432(48)
    53534.0
    下载: 导出CSV

    表 2  ICl+分子离子Λ-S态的光谱常数

    Table 2.  Spectroscopic constants of the Λ-S states of ICl+ molecular ion.

    Λ-S态 Te/cm–1 D0/eV Be/cm–1 ωe/cm–1 Re
    Χ2Π 本文 0 2.50 0.1221 432 2.24
    实验a) 0 2.52
    22Π 本文 18218 0.27 0.0915 259 2.59
    实验b) 19551
    理论c) 14352 207 2.78
    12Δ 本文 17516 0.35 0.0737 109 2.89
    14Σ 本文 13617 0.83 0.0889 218 2.63
    14Δ 本文 17183 0.39 0.0670 138 3.03
    12Σ+ 本文 18015 0.28 0.0654 153 3.05
    32Π 本文 22122 0.80 0.0628 526 3.14
    实验a) 22420
    22Δ 本文 24768 0.52 0.0696 171 2.97
    22Σ+ 本文 25192 0.47 0.0687 164 2.99
    32Σ 本文 25241 0.46 0.0630 181 3.13
    注: a)文献[33]; b)文献[12]; c)文献[16].
    下载: 导出CSV

    表 3  ICl+分子离子Ω态的解离关系

    Table 3.  Dissociation relationships of Ω states of ICl+ molecular ion.

    原子态
    (I++Cl)
    Ω态能量/cm–1
    本文实验a)
    I+(3Pg2)+Cl(2Pu3/2)7/2, 5/2(2), 3/2(3), 1/2(4)00
    I+(3Pg2)+Cl(2Pu1/2)5/2, 3/2(2), 1/2(2)821882
    I+(3Pg0)+Cl(2Pu3/2)3/2, 1/264336448
    I+(3Pg1)+Cl(2Pu3/2)5/2, 3/2(2), 1/2(3)69017087
    I+(3Pg0)+Cl(2Pu1/2)1/272547330
    I+(3Pg1)+Cl(2Pu1/2)3/2, 1/2(2)77227969
    I+(1Dg2)+Cl(2Pu3/2)7/2, 5/2(2), 3/2(3), 1/2(4)1395013727
    I+(1Dg2)+Cl(2Pu1/2)5/2, 3/2(2), 1/2(2)1477114610
    注: a)文献[34].
    下载: 导出CSV

    表 4  ICl+分子离子Ω态的光谱常数

    Table 4.  Spectroscopic constants of Ω states of ICl+ molecular ion.

    Ω态 Te/cm–1 D0/eV Be/cm–1 ωe/cm–1 Re Re处主要的Λ-S成分/%
    X2Π3/2 本文 0 2.31 0.1216 419 2.250 X2Π (98.1)
    实验a) 390
    实验b) 429 2.240±0.01
    理论c) 311 2.470
    X2Π1/2 本文 4501 1.75 0.1217 426 2.248 X2Π (97.7)
    实验d) 4680
    实验b) 4670±16 437 2.224±0.001
    理论c) 5424 314 2.460
    1/2(II) 本文 14808 0.50 0.0864 244 2.666 $ {1^4}{\Sigma ^ - } $ (79.7) 12Σ+ (12.5)
    1/2(III) 本文 17191 0.21 0.0656 78 3.063 $ {1^2}{\Sigma ^ - } $ (38.3) 14Σ+ (25.7)
    32Π (10.8) 12Π (5.8)
    3/2(II) 本文 15202 0.44 0.0831 156 1.518 $ {1^4}{\Sigma ^ - } $ (80.7) 14Σ+ (6.7)
    3/2(III) 本文 16795 0.21 0.0649 107 3.003 14Δ (58.3) 12Δ (34.8)
    注: a)文献[6]; b)文献[12]; c)文献[16]; d)文献[33].
    下载: 导出CSV

    表 5  ICl+分子离子跃迁的Frank-Condon因子

    Table 5.  Frank-Condon factors for the transition of ICl+ molecular ion.

    ν" = 0ν" = 1ν" = 2ν" = 3ν" = 4
    12Δ-Χ2Π
    ν' = 0本文1.888×10–178.612×10–161.956×10–142.919×10–133.193×10–12
    ν' = 1本文3.271×10–161.436×10–143.138×10–134.501×10–124.724×10–11
    ν' = 2本文2.958×10–151.252×10–132.635×10–123.635×10–113.662×10–10
    22Δ-Χ2Π
    ν' = 0本文4.361×10–275.255×10–252.996×10–231.085×10–212.796×10–20
    ν' = 1本文1.373×10–251.547×10–238.325×10–222.864×10–207.046×10–19
    ν' = 2本文2.081×10–242.230×10–221.149×10–203.797×10–198.989×10–18
    22Σ+-X2Π
    ν' = 0本文5.553×10–275.602×10–252.715×10–238.439×10–221.889×10–20
    ν' = 1本文2.304×10–252.065×10–239.017×10–222.559×10–205.290×10–19
    32Σ+-X2Π
    ν' = 0本文4.161×10–182.943×10–161.010×10–142.216×10–133.456×10–12
    ν' = 1本文4.071×10–172.814×10–159.431×10–142.019×10–123.067×10–11
    ν' = 2本文2.033×10–161.374×10–144.503×10–139.412×10–121.394×10–10
    1/2(II)-Χ2Π3/2
    ν' = 0本文1.226×10–93.102×10–83.870×10–73.155×10–61.872×10–5
    ν' = 1本文1.923×10–84.431×10–74.996×10–63.649×10–51.921×10–4
    ν' = 2本文1.679×10–73.501×10–63.541×10–52.296×10–41.060×10–3
    1/2(III)-Χ2Π3/2
    ν' = 0本文1.314×10–229.703×10–213.517×10–198.368×10–181.457×10–16
    ν' = 1本文5.532×10–213.879×10–191.346×10–173.083×10–165.184×10–15
    ν' = 2本文2.944×10–201.987×10–186.647×10–171.468×10–152.379×10–14
    3/2(III)-Χ2Π3/2
    ν' = 0本文1.106×10–225.929×10–211.542×10–192.607×10–183.216×10–17
    ν' = 1本文3.736×10–211.836×10–194.435×10–187.052×10–178.256×10–16
    下载: 导出CSV

    表 6  ICl+分子离子的辐射寿命

    Table 6.  Radiative lifetimes of ICl+ molecular ion.

    跃迁 辐射寿命/s
    ν' = 0 ν' = 1 ν' = 2
    12Δ-Χ2Π 本文 5.69×10–3 4.92×10–3 4.40×10–3
    22Δ-Χ2Π 本文 5.83×10–5 6.18×10–5 6.99×10–5
    22Σ+-X2Π 本文 2.91×10–5 3.28×10–5
    32Σ+-X2Π 本文 1.58×10–5 1.66×10–5 1.83×10–5
    1/2(II)-Χ2Π3/2 本文 3.73×10–2 3.42×10–2 3.09×10–2
    1/2(III)-Χ2Π3/2 本文 1.38×10–2 5.43×10–3 7.61×10–3
    3/2(III)-Χ2Π3/2 本文 3.28×10–2 2.06×10–2
    下载: 导出CSV
  • [1]

    Sherwen T, Schmidt J A, Evans M J, Carpenter L J, Großmann K, Eastham S D, Jacob D J, Dix B, Koenig T K, Sinreich R, Ortega I, Volkamer R, Saiz-Lopez A, Prados-Roman C, Mahajan A S, Ordóñez C 2016 Atmos. Chem. Phys. 16 12239Google Scholar

    [2]

    Vogt R, Sander R, Glasow R V, Crutzen P J 1999 J. Atmos. Chem. 32 375Google Scholar

    [3]

    Calvert J G, Lindberg S E 2004 Atmos. Environ. 38 5087Google Scholar

    [4]

    Küpper F C, Feiters M C, Olofsson B, Kaiho T, Yanagida S, Zimmermann M B, Carpenter L J, Luther G W, Lu Z, Jonsson M, Kloo L 2011 Angew. Chem. Int. Ed. 50 11598Google Scholar

    [5]

    Evans S, Orchard A F 1971 Inorg. Chim. Acta. 5 81Google Scholar

    [6]

    Potts A W, Price W C 1971 Trans. Faraday Soc. 67 1242Google Scholar

    [7]

    Eland J H D 1979 J. Chem. Phys. 70 2926Google Scholar

    [8]

    Dibeler V H, Walker J A, McCulloh K E, Rosenstock H M 1971 Int. J. Mass Spectro. Ion Phys. 7 209Google Scholar

    [9]

    Venkateswarlu P 1975 Can. J. Phys. 53 812Google Scholar

    [10]

    Tuckett R P, Castellucci E, Bonneau M 1985 Chem. Phys. 92 43Google Scholar

    [11]

    Kaur D, Yencha A J, Donovan R J, Kvaran A, Hopkirk A 1993 Org. Mass Spectrom. 28 327Google Scholar

    [12]

    Yencha A J, Lopes M C A, King G C 2000 Chem. Phys. Lett. 325 559Google Scholar

    [13]

    Ridley T, Beattie D A, Cockett M C R, Lawley K P, Donovan R J 2002 Phys. Chem. Chem. Phys. 4 1398Google Scholar

    [14]

    Straub P A, McLean A D 1974 Theoret. Chim. Acta 32 227Google Scholar

    [15]

    Dyke J M, Josland G D, Snijders J G, Boerrigter P M 1984 Chem. Phys. 91 419.Google Scholar

    [16]

    Balasubramanian K 1985 Chem. Phys. 95 225Google Scholar

    [17]

    Werner H, Knowles P J, Knizia G, Manby F R, Schütz M 2012 Wires Comput. Mol. Sci. 2 242Google Scholar

    [18]

    Peterson K A, Yousaf K E 2010 J. Chem. Phys. 133 174116Google Scholar

    [19]

    Peterson K A, Dunning Jr T H 2002 J. Chem. Phys. 117 10548Google Scholar

    [20]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [21]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [22]

    Knowles P J, Werner H J 1988 Chem. Phys. Lett. 145 514Google Scholar

    [23]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [24]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum. Chem. 8 61Google Scholar

    [25]

    Berning A, Schweizer M, Werner H J, Knowles P J, Palmieri P 2000 Mol. Phys. 98 1823Google Scholar

    [26]

    Le Roy R J 2017 J. Quant. Spectrosc. Ra. 186 167Google Scholar

    [27]

    Wu D L, Liu B K, Zhou W T, Chen J Y, Lai Z L, Liu B, Yan B 2025 Chin. Phys. B 34 043101Google Scholar

    [28]

    刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮 2025 物理学报 74 023101Google Scholar

    Liu M J, Tian Y L, Wang Y, Li X X, He X H, Gong T, Sun X C, Guo G Q, Qiu X B, Li C L 2025 Acta Phys. Sin. 74 023101Google Scholar

    [29]

    朱宇豪, 李瑞 2024 物理学报 73 053101Google Scholar

    Zhu Y H, Li R 2024 Acta Phys. Sin. 73 053101Google Scholar

    [30]

    Li R, Lv H N, Sang J Q, Liu X H, Liang G Y 2024 Chin. Phys. B 33 053101Google Scholar

    [31]

    伍冬兰, 郭自依, 周俊杰, 阮文, 曾学锋, 谢安东 2022 物理学报 71 223101Google Scholar

    Wu D L, Guo Z Y, Zhou J J, Ruan W, Zeng X F, Xie A D 2022 Acta Phys. Sin. 71 223101Google Scholar

    [32]

    陈晨, 赵国鹏, 祁月盈, 吴勇, 王建国 2022 物理学报 71 143102Google Scholar

    Chen C, Zhao G P, Qi Y Y, Wu Y, Wang J G 2022 Acta Phys. Sin. 71 143102Google Scholar

    [33]

    Huber K P, Herzberg G 1979 Molecular Spectra and Molecular Structure (Vol. IV) (New York: Van Nostrand Reinhold) p342

    [34]

    Moore C E 1971 Atomic Energy Levels (Washington (DC): National Bureau of Standards Publications

  • [1] 樊景涛, 贾锁堂. 自旋-轨道耦合玻色凝聚体中的自旋频谱动力学响应. 物理学报, 2025, 74(9): 096701. doi: 10.7498/aps.74.20241783
    [2] 刘铭婕, 田亚莉, 王瑜, 李晓筱, 和小虎, 宫廷, 孙小聪, 郭古青, 邱选兵, 李传亮. 含自旋-轨道耦合的$ {{\bf{O}}}_{2}^{ - } $光谱常数计算. 物理学报, 2025, 74(2): 023101. doi: 10.7498/aps.74.20241435
    [3] 邢伟, 李胜周, 孙金锋, 曹旭, 朱遵略, 李文涛, 李悦毅, 白春旭. AlH分子10个Λ-S态和26个Ω态光谱性质的理论研究. 物理学报, 2023, 72(16): 163101. doi: 10.7498/aps.72.20230615
    [4] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学. 物理学报, 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [5] 周永香, 薛迅. 自旋-轨道耦合系统的电子涡旋. 物理学报, 2022, 71(21): 210301. doi: 10.7498/aps.71.20220751
    [6] 邢伟, 李胜周, 孙金锋, 李文涛, 朱遵略, 刘锋. BH分子8个Λ-S态和23个Ω态光谱性质的理论研究. 物理学报, 2022, 71(10): 103101. doi: 10.7498/aps.71.20220038
    [7] 高峰, 张红, 张常哲, 赵文丽, 孟庆田. SiH+(X1Σ+)的势能曲线、光谱常数、振转能级和自旋-轨道耦合理论研究. 物理学报, 2021, 70(15): 153301. doi: 10.7498/aps.70.20210450
    [8] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态. 物理学报, 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [9] 滑亚文, 刘以良, 万明杰. SeH+离子低激发态的电子结构和跃迁性质的理论研究. 物理学报, 2020, 69(15): 153101. doi: 10.7498/aps.69.20200278
    [10] 邢伟, 孙金锋, 施德恒, 朱遵略. icMRCI+Q理论研究BF+离子电子态的光谱性质和预解离机理. 物理学报, 2018, 67(6): 063301. doi: 10.7498/aps.67.20172114
    [11] 赵书涛, 梁桂颖, 李瑞, 李奇楠, 张志国, 闫冰. ZnH分子激发态的电子结构和跃迁性质的理论计算. 物理学报, 2017, 66(6): 063103. doi: 10.7498/aps.66.063103
    [12] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. icMRCI+Q理论研究CF+离子12个-S态和23个态的光谱性质. 物理学报, 2016, 65(3): 033102. doi: 10.7498/aps.65.033102
    [13] 刘华兵, 袁丽, 李秋梅, 谌晓洪, 杜泉, 金蓉, 陈雪连, 王玲. 6Li32S双原子分子的光谱和辐射跃迁理论研究. 物理学报, 2016, 65(3): 033101. doi: 10.7498/aps.65.033101
    [14] 刘慧, 邢伟, 施德恒, 孙金锋, 朱遵略. BCl分子X1Σ+, a3Π和A1Π态的光谱性质. 物理学报, 2014, 63(12): 123102. doi: 10.7498/aps.63.123102
    [15] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究. 物理学报, 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [16] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI+Q理论研究SiSe分子X1Σ+和A1Π电子态的光谱常数和分子常数. 物理学报, 2013, 62(4): 043101. doi: 10.7498/aps.62.043101
    [17] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [18] 刘慧, 施德恒, 孙金锋, 朱遵略. MRCI方法研究CSe(X1Σ+)自由基的光谱常数和分子常数. 物理学报, 2011, 60(6): 063101. doi: 10.7498/aps.60.063101
    [19] 张丽艳, 田颖, 张军杰, 胡丽丽. LiF及AlF3对掺Tm3+氟磷玻璃光学、光谱性质、析晶性能及结构的影响. 物理学报, 2010, 59(11): 8205-8211. doi: 10.7498/aps.59.8205
    [20] 贺黎明, 杨 樾, 陆 慧. 原子实极化效应和钠原子s系列高Rydberg态能级寿命的计算. 物理学报, 2003, 52(6): 1385-1389. doi: 10.7498/aps.52.1385
计量
  • 文章访问数:  167
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-20
  • 修回日期:  2025-05-20
  • 上网日期:  2025-06-04

/

返回文章
返回