搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高电荷态N6+离子与H原子碰撞中态选择电荷交换过程理论研究

牛佳洁 张唯唯 祁月盈 高俊文

引用本文:
Citation:

高电荷态N6+离子与H原子碰撞中态选择电荷交换过程理论研究

牛佳洁, 张唯唯, 祁月盈, 高俊文

Theoretical Study of State-Selective Charge Exchange Processes in Collisions between Highly Charged N6+ Ions and H Atoms

NIU Jiajie, ZHANG Weiwei, QI Yueying, GAO Junwen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 本研究采用双电子半经典渐近态强耦合方法,系统研究了N6+(1s)离子与H(1s)原子碰撞体系在0.25–225 keV/u能区内的单电子俘获过程。计算得到了自旋平均与自旋分辨的总截面、主量子数n分辨以及轨道量子数nℓ分辨的截面数据,并与现有实验结果及多种理论方法的计算结果进行了系统对比分析。计算结果表明,总截面在低能区对能量依赖性较弱,而在高能区则呈现单调递减趋势。态分辨截面分析显示,低能区各子壳层之间存在显著的多通道耦合效应;而在中高能区,截面在轨道量子数ℓ上的分布趋近于统计规律,即电子更倾向于被俘获至具有较高ℓ值的轨道。研究结果进一步表明,对高电荷态离子碰撞体系的准确建模需同时考虑高激发态通道间的耦合效应及电子关联作用。然而,不同理论方法在低能区表现出显著差异,说明对进一步开展具备态分辨能力的实验测量有迫切需求。本工作提供的截面数据,对天体物理和实验室等离子体的诊断建模研究具有重要参考意义。本文数据集可在科学数据银行数据库https://www.scidb.cn/s/3a6Vji中访问获取。
    In this work, we investigate systematically single-electron capture process in N6+(1s) ion and H(1s) atom collisions in a wide energy domain ranging from 0.25 to 225 keV/u using a two-electron semiclassical asymptotic-state close-coupling approach. Spin-averaged and spin-resolved total cross sections, along with n-resolved and nℓ-resolved partial cross sections, are calculated and comprehensively compared with existing experimental measurements and theoretical predictions. The results show a weak energy dependence of total cross sections at low energies (<10 keV/u), followed by a monotonic decreasing trend at higher energies. The analysis of nℓ- resolved cross sections reveals the strong coupling effects between various channels in low energies, while at high energies the relative ℓ distributions in each nℓ-resolved cross sections approximately follow the statistical ℓ distribution, for which the electron is therefore mainly captured into subshells of the maximum ℓ. The present study demonstrates the importance of a two-electron treatment taking into account electronic correlation and the use of extended basis sets within the close-coupling scheme. However, substantial discrepancies exist among theoretical approaches at low energies, it is clear that further experimental and theoretical efforts are required to draw definite conclusions. Our work provides a complete and consistent set of cross sections over a broad range of collision energies, which can be used for various plasma diagnosis and modeling. All the data presented in this paper are openly available at https://www.scidb.cn/s/3a6Vji .
  • [1]

    Fritsch W, Lin C D 1991 Phys. Rep. 2021

    [2]

    Fogle M, Wulf D, Morgan K, McCammon D, Seely D G, Draganić I N, Havener C C 2014 Phys. Rev. A 89042705

    [3]

    Gu L, Kaastra J, Raassen A J J 2016 A&A 588 A52

    [4]

    Anderson H, von Hellermann M G, Hoekstra R, Horton L D, Howman A C, Konig R W T, Martin R, Olson R E, Summers H P 2000 Plasma Phys. Control. Fusion 42781

    [5]

    Delabie E, Brix M, Giroud C, Jaspers R J E, Marchuk O, O'Mullane M G, Ralchenko Y, Surrey E, von Hellermann M G, Zastrow K D, Contributors J E 2010 Plasma Phys. Control. Fusion 52125008

    [6]

    Isler R C 1977 Phys. Rev. Lett. 381359

    [7]

    Isler R C 1994 Plasma Phys. Control. Fusion 36171

    [8]

    Hellermann M G v, Bertschinger G, Biel W, Giroud C, Jaspers R, Jupen C, Marchuk O, Mullane M O, Summers H P, Whiteford A, Zastrow K D 2005 Phys. Scr. 200519

    [9]

    McDermott R M, Dux R, Pütterich T, Geiger B, Kappatou A, Lebschy A, Bruhn C, Cavedon M, Frank A, Harder N d, Viezzer E, the A U T 2018 Plasma Phys. Control. Fusion 60095007

    [10]

    Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trumper J, West R G 1996 Science 274205

    [11]

    Cravens T E 1997 Geophys. Res. Lett. 24105

    [12]

    Hoekstra R, Anderson H, Bliek F W, Hellermann M v, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 401541

    [13]

    Cravens T E 2000 Astrophys. J. 532 L153

    [14]

    Cravens T E 2002 Science 2961042

    [15]

    Holmstrom M, Barabash S, Kallio E 2001 Geophys. Res. Lett. 281287

    [16]

    Beiersdorfer P, Boyce K R, Brown G V, Chen H, Kahn S M, Kelley R L, May M, Olson R E, Porter F S, Stahle C K, Tillotson W A 2003 Science 3001558

    [17]

    Lallement R 2004 A&A 418143

    [18]

    Branduardi-Raymont G, Bhardwaj A, Elsner R F, Gladstone G R, Ramsay G, Rodriguez P, Soria R, Waite J H, Jr, Cravens T E 2007 A&A 463761

    [19]

    Robertson I P, Kuntz K D, Collier M R, Cravens T E, Snowden S L 2009 AIP Conference Proceedings 115652

    [20]

    Wargelin B J, Kornbleuth M, Martin P L, Juda M 2014 Astrophys. J. 79628

    [21]

    Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 A&A 365 L329

    [22]

    Schwadron N A, Cravens T E 2000 Astrophys. J. 544558

    [23]

    Mawhorter R J, Chutjian A, Cravens T E, Djurić N, Hossain S, Lisse C M, MacAskill J A, Smith S J, Simcic J, Williams I D 2007 Phys. Rev. A 75032704

    [24]

    Bodewits D, Hoekstra R, Seredyuk B, McCullough R W, Jones G H, Tielens A G G M 2006 Astrophys. J. 642593

    [25]

    Galeazzi M, Chiao M, Collier M R, Cravens T, Koutroumpa D, Kuntz K D, Lallement R, Lepri S T, McCammon D, Morgan K, Porter F S, Robertson I P, Snowden S L, Thomas N E, Uprety Y, Ursino E, Walsh B M 2014 Nature 512171

    [26]

    Carruthers G R, Page T, Meier R R 1976 J. Geophys. Res. 811664

    [27]

    Rairden R L, Frank L A, Craven J D 1986 J. Geophys. Res. 9113613

    [28]

    Dennerl K, Lisse C M, Bhardwaj A, Burwitz V, Englhauser J, Gunell H, Holmström M, Jansen F, Kharchenko V, Rodríguez-Pascual P M 2006 A&A 451709

    [29]

    Koutroumpa D, Modolo R, Chanteur G, Chaufray J Y, Kharchenko V, Lallement R 2012 A&A 545 A153

    [30]

    Liang G Y, Sun T R, Lu H Y, Zhu X L, Wu Y, Li S B, Wei H G, Yuan D W, Zhong J Y, Cui W, Ma X W, Zhao G 2023 Astrophys. J. 94385

    [31]

    Panov M N, Basalaev A A, Lozhkin K O 1983 Phys. Scr. 1983124

    [32]

    Meyer F W, Howald A M, Havener C C, Phaneuf R A 1985 Phys. Rev. A 323310

    [33]

    Kearns D M, McCullough R W, Trassl R, Gilbody H B 2003 J. Phys. B 363653

    [34]

    Cumbee R S, Mullen P D, Lyons D, Shelton R L, Fogle M, Schultz D R, Stancil P C 2018 Astrophys. J. 8527

    [35]

    Olson R E, Salop A 1977 Phys. Rev. A 16531

    [36]

    Wu Y, Stancil P C, Liebermann H P, Funke P, Rai S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84022711

    [37]

    Igenbergs K, Schweinzer J, Veiter A, Perneczky L, Frühwirth E, Wallerberger M, Olson R E, Aumayr F 2012 J. Phys. B 45065203

    [38]

    Zhang R T, Liao T, Zhang C J, Zou L P, Guo D L, Gao Y, Gu L Y, Zhu X L, Zhang S F, Ma X 2023 Mon. Not. R. Astron. Soc. 5201417

    [39]

    Sisourat N, Pilskog I, Dubois A 2011 Phys. Rev. A 84052722

    [40]

    Gao J W, Wu Y, Sisourat N, Wang J G, Dubois A 2017 Phys. Rev. A 96052703

    [41]

    Gao J W, Qi Y Y, Wu Y, Wang J G 2023 Astrophys. J. 944167

    [42]

    Gao J W, Qi Y Y, Wu Y, Wang J G, Sisourat N, Dubois A 2024 Phys. Rev. A 109012801

    [43]

    Havener C C D I N, Schultz D R, Wu Y, and Stancil P C (unpublished, the data is taken from [36].)

    [44]

    Errea L F, Guzmán F, Illescas C, Méndez L, Pons B, Riera A, Suárez J 2006 Plasma Phys. Control. Fusion 481585

    [45]

    Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 661463

    [46]

    Wei B, Zhang R 2025 Sci. Sin. Phys. Mech. Astron. 55250008(in Chinese) [魏宝仁,张瑞田2025中国科学: 物理学力学天文学55250008]

    [47]

    Wu Y, Meng T, Zhang X, Tan X, Ma P, Yin H, Ren B, Tu B, Zhang R, Xiao J, Ma X, Zou Y, Wei B 2024 Acta Physica Sinica 73240701(in Chinese) [吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁2024物理学报73240701]

    [48]

    Zhu X, Cui S, Xing D, Xu J, Najjari B, Zhao D, Guo D, Gao Y, Zhang R, Su M, Zhang S, Ma X 2024 Chin. Phys. B 33023401

    [49]

    Ma X, Zhang S, Wen W, Huang Z, Hu Z, Guo D, Gao J, Najjari B, Xu S, Yan S, Yao K, Zhang R, Gao Y, Zhu X 2022 Chin. Phys. B 3193401

  • [1] 田馨, 舒鹏丽, 张珂童, 曾德超, 姚志飞, 赵波慧, 任晓森, 秦丽, 朱强, 魏久焱, 温焕飞, 李艳君, 菅原康弘, 唐军, 马宗敏, 刘俊. Au/CeO2(111)表面吸附的电荷转移特性. 物理学报, doi: 10.7498/aps.74.20241522
    [2] 葛振杰, 苏旭, 白丽华. 反旋双色椭圆偏振激光场中Ar原子的非序列双电离. 物理学报, doi: 10.7498/aps.73.20231583
    [3] 李盈傧, 张可, 陈红梅, 康帅杰, 李整法, 程建国, 吴银梦, 翟春洋, 汤清彬, 许景焜, 余本海. 空间非均匀激光场驱动的原子非次序双电离. 物理学报, doi: 10.7498/aps.72.20230548
    [4] 钟国华, 林海青. 芳香超导体: 电-声耦合与电子关联. 物理学报, doi: 10.7498/aps.72.20231751
    [5] 苏杰, 刘子超, 廖健颖, 李盈傧, 黄诚. 反旋双色椭偏场中Ar非次序双电离电子关联的强度依赖. 物理学报, doi: 10.7498/aps.71.20221044
    [6] 黄诚, 钟明敏, 吴正茂. 强场非次序双电离中再碰撞动力学的强度依赖. 物理学报, doi: 10.7498/aps.68.20181811
    [7] 袁国亮, 李爽, 任申强, 刘俊明. 激发态电荷转移有机体的多铁性研究. 物理学报, doi: 10.7498/aps.67.20180759
    [8] 王逸飞, 李晓薇. 石墨烯/BiOI纳米复合物电子结构和光学性质的第一性原理模拟计算. 物理学报, doi: 10.7498/aps.67.20172220
    [9] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, doi: 10.7498/aps.64.147303
    [10] 余本海, 李盈傧. 椭圆偏振激光脉冲驱动的氩原子非次序双电离对激光强度的依赖. 物理学报, doi: 10.7498/aps.61.233202
    [11] 余本海, 李盈傧, 汤清彬. 椭圆偏振激光脉冲驱动的氩原子非次序双电离. 物理学报, doi: 10.7498/aps.61.203201
    [12] 张东玲, 汤清彬, 余本海, 陈东. 碰撞阈值下氩原子非次序双电离. 物理学报, doi: 10.7498/aps.60.053205
    [13] 鲁彦霞, 谢安平, 李小华, 向东, 路兴强, 李新霞, 黄千红. Cq+(q=14)与He,Ne,Ar碰撞的电子损失截面测量与研究. 物理学报, doi: 10.7498/aps.60.083401
    [14] 吕瑛, 陈熙萌, 曹柱荣, 吴卫东. 低能高电荷态离子(4≤ q ≤7)与He碰撞中双俘获与转移电离的截面反转效应. 物理学报, doi: 10.7498/aps.59.3892
    [15] 刘会平, 陈熙萌, 刘兆远, 高志民, 刘玉文, 杜 娟, 张红强, 孙光智, 王 俊, 席发元, 王 媛. 中速C3+与Ne原子靶相互作用过程中单电子转移绝对截面的测量. 物理学报, doi: 10.7498/aps.57.4846
    [16] 刘会平, 陈熙萌, 刘兆远, 丁宝卫, 邵剑雄, 崔 莹, 鲁彦霞, 高志民, 刘玉文, 杜 娟, 孙光智, 席发元, 王兴安, 娄凤君. 中低速C3+与He,Ne,Ar原子相互作用过程中单电子转移绝对截面的测量. 物理学报, doi: 10.7498/aps.57.7606
    [17] 周克瑾, Yasuhisa Tezuka, 崔明启, 马陈燕, 赵屹东, 吴自玉, Akira Yagishita. 硫化锰电子结构的软X射线共振非弹性散射研究. 物理学报, doi: 10.7498/aps.56.2986
    [18] 麻华丽, 李英兰, 杨保华, 王 锋. C60-聚甲基丙烯酸甲脂复合膜的结构、光学和电荷转移特性. 物理学报, doi: 10.7498/aps.54.2859
    [19] 曹柱荣, 蔡晓红, 于得洋, 杨 威, 卢荣春, 邵曹杰, 陈熙萌. 高电荷态Xe离子与He原子碰撞中的电子转移过程研究. 物理学报, doi: 10.7498/aps.53.2943
    [20] 魏建华, 解士杰, 梅良模. 低维混合金属卤化物中的电荷转移机理. 物理学报, doi: 10.7498/aps.49.1561
计量
  • 文章访问数:  17
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-06

/

返回文章
返回