-
本研究采用双电子半经典渐近态强耦合方法,系统研究了N6+(1s)离子与H(1s)原子碰撞体系在0.25–225 keV/u能区内的单电子俘获过程。计算得到了自旋平均与自旋分辨的总截面、主量子数n分辨以及轨道量子数nℓ分辨的截面数据,并与现有实验结果及多种理论方法的计算结果进行了系统对比分析。计算结果表明,总截面在低能区对能量依赖性较弱,而在高能区则呈现单调递减趋势。态分辨截面分析显示,低能区各子壳层之间存在显著的多通道耦合效应;而在中高能区,截面在轨道量子数ℓ上的分布趋近于统计规律,即电子更倾向于被俘获至具有较高ℓ值的轨道。研究结果进一步表明,对高电荷态离子碰撞体系的准确建模需同时考虑高激发态通道间的耦合效应及电子关联作用。然而,不同理论方法在低能区表现出显著差异,说明对进一步开展具备态分辨能力的实验测量有迫切需求。本工作提供的截面数据,对天体物理和实验室等离子体的诊断建模研究具有重要参考意义。本文数据集可在科学数据银行数据库https://www.scidb.cn/s/3a6Vji中访问获取。In this work, we investigate systematically single-electron capture process in N6+(1s) ion and H(1s) atom collisions in a wide energy domain ranging from 0.25 to 225 keV/u using a two-electron semiclassical asymptotic-state close-coupling approach. Spin-averaged and spin-resolved total cross sections, along with n-resolved and nℓ-resolved partial cross sections, are calculated and comprehensively compared with existing experimental measurements and theoretical predictions. The results show a weak energy dependence of total cross sections at low energies (<10 keV/u), followed by a monotonic decreasing trend at higher energies. The analysis of nℓ- resolved cross sections reveals the strong coupling effects between various channels in low energies, while at high energies the relative ℓ distributions in each nℓ-resolved cross sections approximately follow the statistical ℓ distribution, for which the electron is therefore mainly captured into subshells of the maximum ℓ. The present study demonstrates the importance of a two-electron treatment taking into account electronic correlation and the use of extended basis sets within the close-coupling scheme. However, substantial discrepancies exist among theoretical approaches at low energies, it is clear that further experimental and theoretical efforts are required to draw definite conclusions. Our work provides a complete and consistent set of cross sections over a broad range of collision energies, which can be used for various plasma diagnosis and modeling. All the data presented in this paper are openly available at https://www.scidb.cn/s/3a6Vji .
-
Keywords:
- Charge transfer /
- Ion-atom collisions /
- electron correlations
-
[1] Fritsch W, Lin C D 1991 Phys. Rep. 2021
[2] Fogle M, Wulf D, Morgan K, McCammon D, Seely D G, Draganić I N, Havener C C 2014 Phys. Rev. A 89042705
[3] Gu L, Kaastra J, Raassen A J J 2016 A&A 588 A52
[4] Anderson H, von Hellermann M G, Hoekstra R, Horton L D, Howman A C, Konig R W T, Martin R, Olson R E, Summers H P 2000 Plasma Phys. Control. Fusion 42781
[5] Delabie E, Brix M, Giroud C, Jaspers R J E, Marchuk O, O'Mullane M G, Ralchenko Y, Surrey E, von Hellermann M G, Zastrow K D, Contributors J E 2010 Plasma Phys. Control. Fusion 52125008
[6] Isler R C 1977 Phys. Rev. Lett. 381359
[7] Isler R C 1994 Plasma Phys. Control. Fusion 36171
[8] Hellermann M G v, Bertschinger G, Biel W, Giroud C, Jaspers R, Jupen C, Marchuk O, Mullane M O, Summers H P, Whiteford A, Zastrow K D 2005 Phys. Scr. 200519
[9] McDermott R M, Dux R, Pütterich T, Geiger B, Kappatou A, Lebschy A, Bruhn C, Cavedon M, Frank A, Harder N d, Viezzer E, the A U T 2018 Plasma Phys. Control. Fusion 60095007
[10] Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, Trumper J, West R G 1996 Science 274205
[11] Cravens T E 1997 Geophys. Res. Lett. 24105
[12] Hoekstra R, Anderson H, Bliek F W, Hellermann M v, Maggi C F, Olson R E, Summers H P 1998 Plasma Phys. Control. Fusion 401541
[13] Cravens T E 2000 Astrophys. J. 532 L153
[14] Cravens T E 2002 Science 2961042
[15] Holmstrom M, Barabash S, Kallio E 2001 Geophys. Res. Lett. 281287
[16] Beiersdorfer P, Boyce K R, Brown G V, Chen H, Kahn S M, Kelley R L, May M, Olson R E, Porter F S, Stahle C K, Tillotson W A 2003 Science 3001558
[17] Lallement R 2004 A&A 418143
[18] Branduardi-Raymont G, Bhardwaj A, Elsner R F, Gladstone G R, Ramsay G, Rodriguez P, Soria R, Waite J H, Jr, Cravens T E 2007 A&A 463761
[19] Robertson I P, Kuntz K D, Collier M R, Cravens T E, Snowden S L 2009 AIP Conference Proceedings 115652
[20] Wargelin B J, Kornbleuth M, Martin P L, Juda M 2014 Astrophys. J. 79628
[21] Audard M, Behar E, Güdel M, Raassen A J J, Porquet D, Mewe R, Foley C R, Bromage G E 2001 A&A 365 L329
[22] Schwadron N A, Cravens T E 2000 Astrophys. J. 544558
[23] Mawhorter R J, Chutjian A, Cravens T E, Djurić N, Hossain S, Lisse C M, MacAskill J A, Smith S J, Simcic J, Williams I D 2007 Phys. Rev. A 75032704
[24] Bodewits D, Hoekstra R, Seredyuk B, McCullough R W, Jones G H, Tielens A G G M 2006 Astrophys. J. 642593
[25] Galeazzi M, Chiao M, Collier M R, Cravens T, Koutroumpa D, Kuntz K D, Lallement R, Lepri S T, McCammon D, Morgan K, Porter F S, Robertson I P, Snowden S L, Thomas N E, Uprety Y, Ursino E, Walsh B M 2014 Nature 512171
[26] Carruthers G R, Page T, Meier R R 1976 J. Geophys. Res. 811664
[27] Rairden R L, Frank L A, Craven J D 1986 J. Geophys. Res. 9113613
[28] Dennerl K, Lisse C M, Bhardwaj A, Burwitz V, Englhauser J, Gunell H, Holmström M, Jansen F, Kharchenko V, Rodríguez-Pascual P M 2006 A&A 451709
[29] Koutroumpa D, Modolo R, Chanteur G, Chaufray J Y, Kharchenko V, Lallement R 2012 A&A 545 A153
[30] Liang G Y, Sun T R, Lu H Y, Zhu X L, Wu Y, Li S B, Wei H G, Yuan D W, Zhong J Y, Cui W, Ma X W, Zhao G 2023 Astrophys. J. 94385
[31] Panov M N, Basalaev A A, Lozhkin K O 1983 Phys. Scr. 1983124
[32] Meyer F W, Howald A M, Havener C C, Phaneuf R A 1985 Phys. Rev. A 323310
[33] Kearns D M, McCullough R W, Trassl R, Gilbody H B 2003 J. Phys. B 363653
[34] Cumbee R S, Mullen P D, Lyons D, Shelton R L, Fogle M, Schultz D R, Stancil P C 2018 Astrophys. J. 8527
[35] Olson R E, Salop A 1977 Phys. Rev. A 16531
[36] Wu Y, Stancil P C, Liebermann H P, Funke P, Rai S N, Buenker R J, Schultz D R, Hui Y, Draganic I N, Havener C C 2011 Phys. Rev. A 84022711
[37] Igenbergs K, Schweinzer J, Veiter A, Perneczky L, Frühwirth E, Wallerberger M, Olson R E, Aumayr F 2012 J. Phys. B 45065203
[38] Zhang R T, Liao T, Zhang C J, Zou L P, Guo D L, Gao Y, Gu L Y, Zhu X L, Zhang S F, Ma X 2023 Mon. Not. R. Astron. Soc. 5201417
[39] Sisourat N, Pilskog I, Dubois A 2011 Phys. Rev. A 84052722
[40] Gao J W, Wu Y, Sisourat N, Wang J G, Dubois A 2017 Phys. Rev. A 96052703
[41] Gao J W, Qi Y Y, Wu Y, Wang J G 2023 Astrophys. J. 944167
[42] Gao J W, Qi Y Y, Wu Y, Wang J G, Sisourat N, Dubois A 2024 Phys. Rev. A 109012801
[43] Havener C C D I N, Schultz D R, Wu Y, and Stancil P C (unpublished, the data is taken from [36].)
[44] Errea L F, Guzmán F, Illescas C, Méndez L, Pons B, Riera A, Suárez J 2006 Plasma Phys. Control. Fusion 481585
[45] Ullrich J, Moshammer R, Dorn A, Dörner R, Schmidt L P H, Schmidt-Böcking H 2003 Rep. Prog. Phys. 661463
[46] Wei B, Zhang R 2025 Sci. Sin. Phys. Mech. Astron. 55250008(in Chinese) [魏宝仁,张瑞田2025中国科学: 物理学力学天文学55250008]
[47] Wu Y, Meng T, Zhang X, Tan X, Ma P, Yin H, Ren B, Tu B, Zhang R, Xiao J, Ma X, Zou Y, Wei B 2024 Acta Physica Sinica 73240701(in Chinese) [吴怡娇, 孟天鸣, 张献文, 谭旭, 马蒲芳, 殷浩, 任百惠, 屠秉晟, 张瑞田, 肖君, 马新文, 邹亚明, 魏宝仁2024物理学报73240701]
[48] Zhu X, Cui S, Xing D, Xu J, Najjari B, Zhao D, Guo D, Gao Y, Zhang R, Su M, Zhang S, Ma X 2024 Chin. Phys. B 33023401
[49] Ma X, Zhang S, Wen W, Huang Z, Hu Z, Guo D, Gao J, Najjari B, Xu S, Yan S, Yao K, Zhang R, Gao Y, Zhu X 2022 Chin. Phys. B 3193401
计量
- 文章访问数: 17
- PDF下载量: 0
- 被引次数: 0