搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海高能量海底声弹射路径的激发机理研究

梁民帅 吴涵雨 江厚萱 师俊杰 孙大军

引用本文:
Citation:

深海高能量海底声弹射路径的激发机理研究

梁民帅, 吴涵雨, 江厚萱, 师俊杰, 孙大军

Excitation mechanism of high-energy bottom bounce paths in deep sea

LIANG Minshuai, WU Hanyu, JIANG Houxuan, SHI Junjie, SUN Dajun
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 甚低频声波因具有强的穿透性, 其在海洋环境中的传播特性可受到海底深层地质结构的影响. 在已开展的海洋试验中, 垂直阵观测到水面航船的甚低频辐射噪声可激发高能量的深层海底声弹射路径, 但其激发机理尚不明确, 本文针对该现象开展理论基础研究. 基于海底的沉积过程构建包含声速梯度的等效海底模型, 并利用波数积分数值计算方法模拟声波跨海水-海底-海水的传播过程, 深入探究深层海底结构对声传播的影响, 进而揭示高能量海底声弹射现象的激发机理和相关特性规律. 研究表明, 受地质作用影响, 海底沉积层中可产生一定的声速梯度, 该梯度结构使得入射的甚低频声波在深层海底介质中传播时可发生“声翻转”效应, 将大部分能量重新辐射回水声场, 从而激发高能量海底声弹射路径. 在该过程中, 沉积层的厚度和声速结构共同作用影响表层和深层弹射路径的观测特征. 本研究深化了深海甚低频声传播机理的认知, 为利用海底弹射波进行甚低频目标的声探测应用提供理论支撑.
    Very-low-frequency (VLF) (≤100 Hz) acoustic waves exhibit special propagation characteristics in the deep sea, owing to strong penetration capability and interaction with deep geological structures. In a deep sea experiment conducted in the South China Sea, a vertical linear array including 64 elements is moored to the bottom (approximately 4360 m depth) to receive the acoustic signal. In the bearing-time record (BTR) processed by beamforming, a high-energy bottom bounce path is observed from the ship noise received by the bottom-moored vertical linear array, which shows an abrupt increase in energy near a grazing angle of 45°. However, the physical mechanism causing this phenomenon is still unclear, and we investigate it further in this work. According to the data processing, we develop an environmental model of the seabed by combining continuous speed gradient, which arises from long-term geological compaction processes, in the sediment. This model is compared with a traditional stratified model under the assumption of a uniform sediment layer. The wavenumber integration method is adopted in numerical simulation to accurately calculate the pressure field and analyze the cross-media propagation. The numerical simulations show that the positive velocity gradient (increasing from 1600 m/s to 2144 m/s) causes an ‘acoustic turning’ effect, which reradiates substantial acoustic energy back into the water column and generates the observed high-energy bounce paths. This is supported by theoretical analysis in the WKB approximation, where the calculated reflection coefficient shows a sharp transition in the acoustic turning point, explaining the energy fluctuations observed in the experimental BTR. Further analysis shows that the thickness of sediment influences the angular separation between bottom bounce paths, while its sound speed structure determines the turning angle. These findings offer new insights into VLF acoustic propagation in the deep sea and also provide critical evidence for supporting a transition from simplified stratified models to a more realistic model with a continuous gradient structure. Furthermore, the discovery of high-energy bottom bounce paths provides a new way for enhancing the capabilities of underwater detection, and these observed features also provide reliable pressure field characteristics for inverting deep seabed parameters.
  • 图 1  海洋试验场景

    Fig. 1.  Diagram of ocean experiment.

    图 2  宽带BTR(20—100 Hz)

    Fig. 2.  BTR for broadband frequencies 20–100 Hz.

    图 3  船载AIS记录货轮的航行轨迹

    Fig. 3.  Cargo vessel trajectory recorded by shipboard AIS.

    图 4  时延估计结果(互相关)

    Fig. 4.  Time delay estimation results from cross-correlation analysis.

    图 5  沉积层含声速梯度的声学模型示意图(${\theta _{\mathrm{w}}}, {\theta _{{\mathrm{sed}}}}$分别为海水及沉积层中的掠射角; ${\theta _{\mathrm{c}}}$为表层海底全反射临界角, $h$为沉积层厚度, ${c_i}(i = {\mathrm{w}}, {\mathrm{sed}}\text{-}{\mathrm{top}}, {\mathrm{sed}}\text{-}{\mathrm{bot}}, {\mathrm{b}})$分别为海水, 沉积层上、下界面及基底层中的声速, ${\rho _i}(i = {\mathrm{w}}, {\mathrm{sed}}, {\mathrm{b}})$分别为海水, 沉积层及基底层中的密度)

    Fig. 5.  Schematic diagram of the acoustic model with a varying velocity in the sediment layer (${\theta _{\mathrm{w}}}, {\theta _{{\mathrm{sed}}}}$ are the grazing angles in the seawater and the sediment layer; ${\theta _{\mathrm{c}}}$ is the critical angle at the seabed surface; $h$ is the thickness of the sediment layer; ${c_i}(i = {\mathrm{w}}, {\mathrm{sed}}\text{-}{\mathrm{top}}, {\mathrm{sed}}\text{-}{\mathrm{bot}}, {\mathrm{b}})$ are the sound speeds in the seawater, at the upper/lower interfaces of the sediment layer, and in the basement layer; ${\rho _i}(i = {\mathrm{w}}, {\mathrm{sed}}, {\mathrm{b}})$ are the densities of the seawater, the sediment layer, and the basement layer).

    图 6  沉积层为均匀声速的声学模型示意图

    Fig. 6.  Schematic diagram of the acoustic model with a constant velocity in the sediment layer.

    图 7  均匀沉积层模型下的深层海底路径反射系数

    Fig. 7.  Seabed reflection coefficient for the model with a constant velocity in the sediment layer.

    图 8  沉积层含声速梯度模型下的深层海底路径反射系数

    Fig. 8.  Seabed reflection coefficient for the model with a varying velocity in the sediment layer.

    图 9  声场传播损失(仿真) (a) 沉积层含声速梯度的仿真结果; (b) 均匀沉积层模型的仿真结果

    Fig. 9.  Acoustic transmission loss field by numerical simulation: (a) Simulation results for the model with a varying velocity in the sediment layer; (b) simulation results for the model with constant velocity in the sediment layer.

    图 10  宽带波束形成的仿真结果 (a) 沉积层含声速梯度的沉积仿真结果; (b) 均匀沉积层模型仿真结果

    Fig. 10.  Broadband beamforming by numerical simulation: (a) Simulation results for the model with a varying velocity in the sediment layer; (b) simulation results for the model with constant velocity in the sediment layer.

    图 11  不同条件下深层海底路径俯仰角

    Fig. 11.  Beam angle of deep bottom path under different conditions.

    图 12  突变角度附近的能量变化(归一化)

    Fig. 12.  Normalized energy around the transition angle.

    图 13  模型1和模型2的仿真结果 (a) 模型1的宽带波束输出(20—100 Hz); (b) 模型1的声场传播损失; (c) 模型2的宽带波束输出(20—100 Hz); (d) 模型2的声场传播损失

    Fig. 13.  Simulation results for model 1 and model 2: (a) Broadband beam output (20–100 Hz) for model 1; (b) acoustic transmission loss field for model 1; (c) broadband beam output (20–100 Hz) for model 2; (d) acoustic transmission loss field for model 2.

    图 14  模型3的仿真结果 (a) 模型3的宽带波束输出(20—100 Hz); (b) 模型3的声场传播损失

    Fig. 14.  Simulation results for model 3: (a) Broadband beam output (20–100 Hz) for model 3; (b) acoustic transmission loss field for model 3.

    表 1  模型所用环境参数

    Table 1.  Environmental parameters used in models.

    h/m ${c_{{\mathrm{sed}}}}$/
    (${\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}$)
    ${\rho _{{\mathrm{sed}}}}$/
    (${\mathrm{g}} \cdot {\mathrm{cm}}^{ - 3}$)
    ${c_{\mathrm{b}}}$/
    (${\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}$)
    ${\rho _{\mathrm{b}}}$/
    (${\mathrm{g}} \cdot {\mathrm{cm}}^{ - 3}$)
    声速连续
    模型
    450 1600—2144 1.1 2144 1.7
    声速均匀
    模型
    450 1600 1.1 2144 1.7
    下载: 导出CSV

    表 2  仿真中模型所用环境参数

    Table 2.  Environmental parameters used in simulation models.

    $h$/${\mathrm{m}}$ ${c_{{\mathrm{sed}}}}$/
    (${\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}$)
    ${\rho _{{\mathrm{sed}}}}$/
    (${\mathrm{g}} \cdot {\mathrm{cm}}^{ - 3}$)
    ${c_{\mathrm{b}}}$/
    (${\mathrm{m}} \cdot {{\mathrm{s}}^{ - 1}}$)
    ${\rho _{\mathrm{b}}}$/
    (${\mathrm{g}} \cdot {\mathrm{cm}}^{ - 3}$)
    模型1 450 1600—1800 1.1 2144 1.7
    模型2 450 1600—2500 1.1 2500 1.7
    模型3 50 1600—2144 1.1 2144 1.7
    下载: 导出CSV
  • [1]

    Smith T A, Rigby J 2022 Ocean Eng. 266 112863Google Scholar

    [2]

    Liu B T, Huang S B, Zheng B, Chen X F, Zhao J, Qi X R, Li Y, Liu S C 2023 J. Acoust. Soc. Am. 153 415Google Scholar

    [3]

    Sun D J, Lu M Y, Mei J D, Wang S C, Pei Y Q 2023 J. Acoust. Soc. Am. 150 952

    [4]

    Yang K F, Zhou T, Hui J, Xu C 2025 Appl. Acoust. 233 110623Google Scholar

    [5]

    Zhang D L, Gao L S, Sun D J, Teng T T 2022 Appl. Acoust. 188 108549Google Scholar

    [6]

    Zurk L M, Boyle J K, Shibley J 2013 Asilomar Conference on Signals, Systems and Computers Pacific Grove, USA, November 3–6, 2013 p2130

    [7]

    Mccargar R, Zurk L M 2013 J. Acoust. Soc. Am. 133 EL320Google Scholar

    [8]

    Mccargar R K, Zurk L M 2012 J. Acoust. Soc. Am. 132 2081

    [9]

    Kniffin G P, Boyle J K, Zurk L M, Siderius M 2016 J. Acoust. Soc. Am. 139 418Google Scholar

    [10]

    Urick R. 1983 Principles of Underwater Sound (3nd Ed. ) (San Francisco: McGraw-Hill Book Company) pp146–150

    [11]

    Gaul R D, Knobles D P, Shooter J A, Wittenborn A F 2007 IEEE J. Ocean. Eng. 32 497Google Scholar

    [12]

    Duan R, Yang K D, Li H, Yang Q L, Wu F Y, Ma Y L 2019 J. Acoust. Soc. Am. 145 903Google Scholar

    [13]

    Yang K D, Xu L Y, Yang Q L, Duan R 2018 J. Acoust. Soc. Am. 143 EL8Google Scholar

    [14]

    Duan R, Yang K D, Ma Y L, Yang Q L, Li H 2014 J. Acoust. Soc. Am. 136 EL159Google Scholar

    [15]

    朱方伟, 郑广赢, 刘福臣 2021 哈尔滨工程大学学报 42 1510

    Zhu F W, Zheng G Y, Liu F C 2021 J. Harbin Eng. Univ. 42 1510

    [16]

    Cao R, Yang K D, Ma Y L, Yang Q L, Xia H J, Shi Y 2019 Acta Acust. United Acust. 105 248Google Scholar

    [17]

    吴俊楠, 周士弘, 张岩 2016 中国科学: 物理学 力学 天文学 46 094311Google Scholar

    Wu J N, Zhou S H, Zhang Y 2016 Sci. Sin. Phys. Mech. Astron. 46 094311Google Scholar

    [18]

    谢亮, 王鲁军, 林旺生 2021 声学学报 46 171

    Xie L, Wang L J, Lin W S 2021 Acta Acust. 46 171

    [19]

    Chen H Y, Zhu Z R, Yang D S 2024 IEEE J. Oceanic Eng. 49 1127Google Scholar

    [20]

    Krolik J, Swingler D 1990 IEEE Trans. Acoust. Speech Signal Process. 38 356Google Scholar

    [21]

    Li C F, Li J B, Ding W W 2015 J. Geophys. Res. Solid Earth. 120 1377Google Scholar

    [22]

    Zhao M H, Qiu X L, Xia S H, Xu H L, Wang P, Wang T K, Lee C S, Xia K Y 2010 Tectonophysics 480 183Google Scholar

    [23]

    Wei X D, Ruan A, Li J B, Niu H W, Wu Z L, Ding W W 2017 Mar. Geophys. Res. 38 125Google Scholar

    [24]

    王海峰, 张振, 杨永, 邓希光, 徐华宁, 朱克超, 何高文 2021 地质通报 40 305

    Wang H F, Zhang Z, Ynag Y, Deng X G, Xu H N, Zhu K C, He G W 2021 Geological Bull. China 40 305

    [25]

    Hamilton E L 1980 J. Acoust. Soc. Am. 68 1313Google Scholar

    [26]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (3nd Ed. ) (New York: Springer) pp38–188

  • [1] 韩帅斌, 罗勇, 李虎, 王益民, 武从海. 基于流声分离的亚声速射流能量输运特性分析. 物理学报, doi: 10.7498/aps.74.20250353
    [2] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性. 物理学报, doi: 10.7498/aps.73.20231472
    [3] 左一武, 田晶, 杨清, 胡晓, 江阳. 一种基于大角度倾斜光纤光栅包层模的低频声传感方案. 物理学报, doi: 10.7498/aps.72.20230067
    [4] 孙冠文, 崔寒茵, 李超, 林伟军. 火星大气频散声速剖面建模方法及其对声传播路径的影响. 物理学报, doi: 10.7498/aps.71.20221531
    [5] 韩东海, 张广军, 赵静波, 姚宏. 新型Helmholtz型声子晶体的低频带隙及隔声特性. 物理学报, doi: 10.7498/aps.71.20211932
    [6] 朱启轩, 孙超, 刘雄厚. 利用海底弹射区角度-距离干涉结构特征实现声源深度估计. 物理学报, doi: 10.7498/aps.71.20220746
    [7] 黎章龙, 胡长青, 赵梅, 秦继兴, 李整林, 杨雪峰. 基于大掠射角海底反射特性的深海地声参数反演. 物理学报, doi: 10.7498/aps.71.20211915
    [8] 刘代, 李整林, 刘若芸. 浅海周期起伏海底环境下的声传播. 物理学报, doi: 10.7498/aps.70.20201233
    [9] 李梦竹, 李整林, 周纪浔, 张仁和. 一种低声速沉积层海底参数声学反演方法. 物理学报, doi: 10.7498/aps.68.20190183
    [10] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, doi: 10.7498/aps.68.20190824
    [11] 侯倩男, 吴金荣. 浅海小掠射角的海底界面声反向散射模型的简化. 物理学报, doi: 10.7498/aps.68.20181475
    [12] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, doi: 10.7498/aps.68.20181761
    [13] 李晟昊, 李整林, 李文, 秦继兴. 深海海底山环境下声传播水平折射效应研究. 物理学报, doi: 10.7498/aps.67.20181480
    [14] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, doi: 10.7498/aps.65.014303
    [15] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波. 物理学报, doi: 10.7498/aps.63.024301
    [16] 周天, 李海森, 朱建军, 魏玉阔. 利用多角度海底反向散射信号进行地声参数估计. 物理学报, doi: 10.7498/aps.63.084302
    [17] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, doi: 10.7498/aps.62.134302
    [18] 杨坤德, 马远良. 利用海底反射信号进行地声参数反演的方法. 物理学报, doi: 10.7498/aps.58.1798
    [19] 宗有泰, 钱幼能, 周鸿赉. 超流Hell中第一声、第二声和第四声声速的测量. 物理学报, doi: 10.7498/aps.29.1513
    [20] 钱祖文. 关于声散射声. 物理学报, doi: 10.7498/aps.25.472
计量
  • 文章访问数:  298
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-13
  • 修回日期:  2025-09-09
  • 上网日期:  2025-09-17

/

返回文章
返回