搜索

x
中国物理学会期刊

基于声黑洞结构的夹心式弯曲振动超声换能器

CSTR: 32037.14.aps.74.20250767

Sandwich-type flexural vibration ultrasonic transducer based on the structure of acoustic black hole

CSTR: 32037.14.aps.74.20250767
PDF
HTML
导出引用
  • 基于声黑洞结构在对弯曲波调控中的能量聚焦与位移放大方面的优势, 提出了一种新型声黑洞夹心式弯曲振动换能器, 该换能器由夹心式弯曲振动换能器与声黑洞探头组成. 基于Timoshenko梁理论, 采用传输矩阵法建立了换能器整体弯曲振动的理论模型, 理论运算得出的解析解与仿真得出的数值解相吻合. 通过有限元方法对该换能器的电阻抗频率响应特性、振动模态、辐射声场和振动位移进行模拟仿真研究, 并与悬链线型换能器进行对比分析. 结果显示, 在相同振动模态下, 声黑洞型换能器的最大声压和振动位移均优于悬链线型换能器, 表明声黑洞结构能够有效提升弯曲振动位移和换能器的侧向辐射性能. 最后加工出了该换能器样机并对其电阻抗特性以及振动模态进行实验测量, 实验结果与仿真结果吻合良好.

     

    Based on the advantages of the acoustic black hole (ABH) structure in energy focusing and displacement amplification during the regulation of flexural waves, a new type of ABH sandwich-shaped flexural vibration transducer is proposed in this work. This transducer consists of a sandwich-shaped flexural vibration transducer and an ABH probe. Based on the Timoshenko beam theory, the theoretical model of the overall flexural vibration of the transducer is established by the transfer matrix method, and the calculated results are consistent with the finite element simulation results. The impedance frequency response characteristics, vibration modes, radiation acoustic field and vibration displacement of this transducer are discussed by the finite element method, and a comparative analysis is conducted with the catenary-shaped transducer. The results show that the maximum sound pressure and vibration displacement of the ABH transducer under the same mode are greater than those of the catenary-shaped transducer, indicating that the ABH structure can efficiently enhance the displacement of flexural vibration and the radiation performance of the transducer, and is expected to be utilized as a small-scale acoustic chemical reactor. Finally, a prototype of this transducer is fabricated, then its impedance characteristics and vibration modes are experimentally measured. The experimental results are in agreement with the simulation results.

     

    目录

    /

    返回文章
    返回