搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声黑洞结构的夹心式弯曲振动超声换能器

叶文旭 江昊 王怡 林书玉

引用本文:
Citation:

基于声黑洞结构的夹心式弯曲振动超声换能器

叶文旭, 江昊, 王怡, 林书玉

Sandwich-type flexural vibration ultrasonic transducer based on the structure of acoustic black hole

YE Wenxu, JIANG Hao, WANG Yi, LIN Shuyu
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于声黑洞结构在对弯曲波调控中的能量聚焦与位移放大方面的优势, 提出了一种新型声黑洞夹心式弯曲振动换能器, 该换能器由夹心式弯曲振动换能器与声黑洞探头组成. 基于Timoshenko梁理论, 采用传输矩阵法建立了换能器整体弯曲振动的理论模型, 理论运算得出的解析解与仿真得出的数值解相吻合. 通过有限元方法对该换能器的电阻抗频率响应特性、振动模态、辐射声场和振动位移进行模拟仿真研究, 并与悬链线型换能器进行对比分析, 结果显示, 在相同振动模态下, 声黑洞型换能器的最大声压和振动位移均优于悬链线型换能器, 表明声黑洞结构能够有效提升弯曲振动位移和换能器的侧向辐射性能. 最后加工出了该换能器样机并对其电阻抗特性以及振动模态进行实验测量, 实验结果与仿真结果吻合良好.
    Based on the advantages of the acoustic black hole (ABH) structure in energy focusing and displacement amplification during the regulation of flexural waves, a new type of ABH sandwich-shaped flexural vibration transducer is proposed in this work. This transducer consists of a sandwich-shaped flexural vibration transducer and an ABH probe. Based on the Timoshenko beam theory, the theoretical model of the overall flexural vibration of the transducer is established by the transfer matrix method, and the calculated results are consistent with the finite element simulation results. The impedance frequency response characteristics, vibration modes, radiation acoustic field and vibration displacement of this transducer are discussed by the finite element method, and a comparative analysis is conducted with the catenary-shaped transducer. The results show that the maximum sound pressure and vibration displacement of the ABH transducer under the same mode are greater than those of the catenary-shaped transducer, indicating that the ABH structure can efficiently enhance the displacement of flexural vibration and the radiation performance of the transducer, and is expected to be utilized as a small-scale acoustic chemical reactor. Finally, a prototype of this transducer is fabricated, then its impedance characteristics and vibration modes are experimentally measured. The experimental results are in agreement with the simulation results.
  • 图 1  换能器结构与尺寸参数示意图

    Fig. 1.  Schematic diagram of the structure and size parameters of the transducer.

    图 2  传输矩阵法示意图 (a)模型简化图; (b)梁的振动单元划分

    Fig. 2.  Schematic diagram of the transfer matrix method: (a) Model simplification diagram; (b) the vibration element division of variable cross-section beam.

    图 3  离散振动单元边界力学量

    Fig. 3.  Mechanical quantities at the boundary of discrete vibration elements.

    图 4  理论模型计算结果与收敛性验证 (a) 理论模型计算结果; (b) 收敛性验证

    Fig. 4.  Theoretical model computation results and convergence verification: (a) The theoretical model calculation results; (b) the convergence verification.

    图 5  换能器第六阶弯曲振动模态 (a) 声黑洞型换能器第六阶弯曲振动模态; (b) 悬链线型换能器第六阶弯曲振动模态

    Fig. 5.  The sixth-order flexural vibration mode of the transducers: (a) The sixth-order flexural vibration mode of the acoustic black hole structure transducer; (b) the sixth-order flexural vibration mode of the catenary-shaped structure transducer.

    图 6  探头振动位移对比 (a) 空气中的探头振动位移对比; (b) 水中的探头振动位移对比

    Fig. 6.  Comparison of probe vibration displacement: (a) Comparison of probe vibration displacements in the air; (b) comparison of probe vibration displacements in the water.

    图 7  换能器水中声压 (a) 声黑洞型换能器水中声压; (b) 悬链线型换能器水中声压

    Fig. 7.  The sound pressure of the transducers in water: (a) The underwater sound pressure of the acoustic black hole structure transducer; (b) the underwater sound pressure of the catenary-shaped structure transducer.

    图 8  换能器实物图

    Fig. 8.  Physical photo of the transducer.

    图 9  电阻抗频率响应仿真曲线

    Fig. 9.  Simulation result of the impedance-frequency response curve.

    图 10  换能器阻抗分析实验装置以及阻抗测量结果 (a) WK6500B阻抗分析仪及换能器; (b) 阻抗测量结果

    Fig. 10.  Impedance analyzer experimental equipment of transducer and impedance measurement result: (a) WK6500B impedance analyzer and transducer; (b) the impedance measurement result.

    图 11  PSV-400全场扫描式激光振动测量系统及换能器振动模态测量结果 (a) 激光测振实验装置; (b) 换能器弯曲振动模态测量结果; (c) 振动位移分布测量结果

    Fig. 11.  PSV-400 laser vibrometer measurement system and transducer vibration mode measurement result: (a) Laser vibrometer experimental equipment; (b) measured flexural vibration mode of the transducer; (c) measurement results of vibration displacement distribution.

    表 1  m与共振频率的关系

    Table 1.  Relationship between m and resonant frequency.

    悬链线共振
    频率/kHz
    声黑洞共振频率/ kHz
    m =1.8 m = 2.1 m = 2.4 m = 2.7 m = 3
    一阶 2.5 3.1 2.3 1.8 1.5 1.2
    二阶 5.9 6.4 5.8 5.3 4.8 4.4
    三阶 10.1 10.9 10.0 9.4 8.9 8.4
    四阶 15.0 16.1 15.0 14.1 13.5 13.0
    五阶 20.8 22.4 20.8 19.6 18.8 17.9
    六阶 27.7 29.9 27.7 26.1 24.7 23.7
    下载: 导出CSV

    表 2  换能器材料参数

    Table 2.  Material parameters of the transducer.

    材料 PZT-4
    密度/
    (kg·m–3)
    7850 7500 2700
    泊松比 0.28 0.33
    杨氏模量
    /GPa或
    弹性矩阵
    /GPa
    205 ${\left[ {\begin{array}{*{20}{c}} {139}&{77.8}&{74.3}&0&0&0 \\ {77.8}&{139}&{74.3}&0&0&0 \\ {74.3}&{74.3}&{115}&0&0&0 \\ 0&0&0&{25.6}&0&0 \\ 0&0&0&0&{25.6}&0 \\ 0&0&0&0&0&{30.6} \end{array}} \right]}$ 70
    下载: 导出CSV

    表 3  换能器弯曲振动频率计算结果对比

    Table 3.  Comparison of calculation results for the flexural vibration frequency of the transducer.

    振动频率/kHz误差/%
    理论仿真
    一阶1.2931.2890.31
    二阶4.4484.4320.36
    三阶8.5188.6491.51
    四阶13.16113.0450.88
    五阶18.20217.9791.24
    六阶23.94823.6451.28
    下载: 导出CSV

    表 4  两种结构的探头不同入水深度对共振频率与最大声压的关系

    Table 4.  Relationship between the resonant frequency and the maximum sound pressure of two types of probes with different water entry depths.

    入水深度/mm声黑洞结构悬链线结构
    共振频率/kHz最大声压/Pa共振频率/kHz最大声压/Pa
    2522.8159.57×10526.6803.01×105
    5022.2114.22×10526.0353.42×104
    7521.7194.96×10425.4766.54×103
    下载: 导出CSV
  • [1]

    林书玉 2004 超声换能器的原理及设计 (北京: 科学出版社) 第148页

    Lin S Y 2004 The Theory and Design of Ultrasonic Transducers (Beijing: Science Press) p148

    [2]

    Nguyen H T, Nguyen H D, Uan J Y, Wang D A 2014 Ultrasonics 54 2063Google Scholar

    [3]

    闫久春, 周玉生, 董震, 杨士勤, 周福洪 2001 声学学报 2 104Google Scholar

    Yan J C, Zhou Y S, Dong Z, Yang S Q, Zhou F H 2001 Acta Acust. 2 104Google Scholar

    [4]

    Nath C, Rahman M, Neo K S 2009 J. Mater. Process. Tech. 209 4459Google Scholar

    [5]

    Nath C, Rahman M, Neo K S 2009 Int. J. Mach. Tool. Manu. 49 1089Google Scholar

    [6]

    张德远, 张成茂 2012 中国机械工程 23 39Google Scholar

    Zhang D Y, Zhang C M 2012 China Mech. Eng. 23 39Google Scholar

    [7]

    张园, 康仁科, 刘津廷, 张一鸣, 郑伟帅, 董志刚 2017 机械工程学报 53 33Google Scholar

    Zhang Y, Kang R K, Liu J T, Zhang Y M, Zheng W S, Dong Z G 2017 J. Mech. Eng. 53 33Google Scholar

    [8]

    王剑, 郭吉丰, 鹿存跃, 王文浩, 田创建 2007 声学学报 32 511Google Scholar

    Wang J, Guo J F, Lu C Y, Wang W H, Tian C J 2007 Acta Acust. 32 511Google Scholar

    [9]

    Kurosawa M K, Kodaira O, Tsuchitoi Y, Higuchi T 1998 IEEE T. Ultrason. Ferr. 45 1188Google Scholar

    [10]

    Yun C H, Ishii T, Nakamura K, Ueha S, Akashi K 2001 Jpn. J. Appl. Phys. 40 3773Google Scholar

    [11]

    Mironov M A 1988 Sov. Phys. Acoust. 35 176

    [12]

    Mironov M A, Pislyakov V V 2002 Acoust. Phys. 48 347Google Scholar

    [13]

    Hook K, Cheer J, Daley S 2019 J. Acoust. Soc. Am. 145 3488Google Scholar

    [14]

    Ma L, Cheng L 2019 J. Sound Vib. 458 349Google Scholar

    [15]

    Zhao L X, Lai C Q, Yu M 2020 Mech. Syst. Sig. Process. 144 106868Google Scholar

    [16]

    Deng J, Guasch O, Zheng L, Song T T, Cao Y S 2021 J. Sound Vib. 494 115790Google Scholar

    [17]

    刘洋, 陈诚, 林书玉 2024 物理学报 73 084302Google Scholar

    Liu Y, Chen C, Lin S Y 2024 Acta Phys. Sin. 73 084302Google Scholar

    [18]

    王怡, 陈诚, 林书玉 2025 物理学报 74 044303Google Scholar

    Wang Y, Chen C, Lin S Y 2025 Acta Phys. Sin. 74 044303Google Scholar

    [19]

    Remillieux M C, Anderson B E, Le Bas P Y, Ulrich T J 2014 Ultrasonics 54 1409Google Scholar

    [20]

    Chen C, Liu Y, Wang C H, Guo J Z, Lin S Y 2024 Ultrason. Sonochem. 111 107106Google Scholar

    [21]

    Wen S H, Xu L, Gong T, Zhang H D, Liang Z F, Yao L 2025 Appl. Acoust. 239 110826Google Scholar

    [22]

    Zhou G P, Li M X 2000 J. Acoust. Soc. Am. 107 1358Google Scholar

  • [1] 刘迎春, 朱元博, 张洪军, 刘海顺, 曹文武. 李织构(Ba, Ca)(Zr, Ti)O3陶瓷全矩阵机电性能及超声换能器应用. 物理学报, doi: 10.7498/aps.74.20250835
    [2] 王怡, 陈诚, 林书玉. 声黑洞楔形结构振动模式转换超声换能器. 物理学报, doi: 10.7498/aps.74.20241326
    [3] 潘瑞, 莫喜平, 柴勇, 张秀侦, 田芝凤. 压电圆环径向弯曲振动与激励研究. 物理学报, doi: 10.7498/aps.73.20240887
    [4] 刘洋, 陈诚, 林书玉. 基于声黑洞设计理论的径向夹心式径-弯复合换能器. 物理学报, doi: 10.7498/aps.73.20231983
    [5] 董宜雷, 陈诚, 林书玉. 基于传输矩阵法的任意变厚度环型压电超声换能器. 物理学报, doi: 10.7498/aps.72.20222110
    [6] 易红霞, 肖刘, 苏小保. 传输矩阵法在行波管内部反射引起的增益波动计算中的应用. 物理学报, doi: 10.7498/aps.65.128401
    [7] 尹彬, 柏云龙, 齐艳辉, 冯素春, 简水生. 拉锥型啁啾光纤光栅滤波器的研究. 物理学报, doi: 10.7498/aps.62.214213
    [8] 武继江, 高金霞. 含特异材料一维超导光子晶体的带隙特性研究. 物理学报, doi: 10.7498/aps.62.124102
    [9] 李春早, 刘少斌, 孔祥鲲, 卞博锐, 张学勇. 外磁场与温度对低温超导光子晶体低频禁带特性的影响. 物理学报, doi: 10.7498/aps.61.075203
    [10] 罗小光, 何济洲. 摇摆型棘齿热电子隧穿制冷. 物理学报, doi: 10.7498/aps.60.090506
    [11] 贺兵香, 何济洲, 缪贵玲. 纳米线异质结构对电子制冷机性能的影响. 物理学报, doi: 10.7498/aps.60.040509
    [12] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机. 物理学报, doi: 10.7498/aps.59.3846
    [13] 刘冬梅, 韩鹏. 含单负特异材料一维无序扰动周期结构中的光子局域特性研究. 物理学报, doi: 10.7498/aps.59.7066
    [14] 潘晓娟, 贺西平. 厚圆盘弯曲振动研究. 物理学报, doi: 10.7498/aps.59.7911
    [15] 童 凯, 崔卫卫, 汪梅婷, 李志全. 一维缺陷光子晶体温度的测量. 物理学报, doi: 10.7498/aps.57.762
    [16] 蔡璐璐, 尹闻闻, 吴 飞. 均匀光纤Bragg光栅局部横向受力特性研究. 物理学报, doi: 10.7498/aps.57.7737
    [17] 於陆勒, 盛政明, 张 杰. 均匀等离子体光栅的色散特性研究. 物理学报, doi: 10.7498/aps.57.6457
    [18] 田 赫, 掌蕴东, 王 号, 邱 巍, 王 楠, 袁 萍. 光脉冲在微环耦合谐振光波导中传输线性特性的数值仿真. 物理学报, doi: 10.7498/aps.57.7012
    [19] 郝保良, 刘濮鲲, 唐昌建. 二维非正交坐标斜方格金属光子带隙结构. 物理学报, doi: 10.7498/aps.55.1862
    [20] 刘延柱. 黏性介质中圆截面弹性细杆的平面振动. 物理学报, doi: 10.7498/aps.54.4989
计量
  • 文章访问数:  306
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-13
  • 修回日期:  2025-07-25
  • 上网日期:  2025-08-08

/

返回文章
返回