搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

目标性质导向的材料生成: 迈向按需构筑的材料逆向设计

刘章赫 陈新宇 周跫桦 王金兰

引用本文:
Citation:

目标性质导向的材料生成: 迈向按需构筑的材料逆向设计

刘章赫, 陈新宇, 周跫桦, 王金兰

Goal-property-guided material generation: Toward on-demand construction via inverse design of materials

LIU Zhanghe, CHEN Xinyu, ZHOU Qionghua, WANG Jinlan
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 近年来, 机器学习在材料科学中的应用显著加快了新材料的发现, 特别是在结合第一性原理计算等传统方法后, 能够高效筛选已有数据库中的潜在高性能材料. 然而, 此类方法大多局限于已有化学空间, 难以实现对全新材料结构的主动设计. 为突破这一瓶颈, 基于生成模型的材料逆向设计方法逐渐兴起, 成为探索未知结构与性质空间的重要手段. 尽管当前生成模型在晶体结构生成方面取得了初步进展, 但如何实现目标性质导向的材料生成仍面临显著挑战. 本文首先介绍了近年来在材料生成领域中具有代表性的生成模型, 包括CDVAE, MatGAN以及MatterGen, 分析其在结构生成上的基本能力与局限. 随后重点探讨如何将目标性质有效引入生成模型, 实现性质导向的结构生成, 具体包括基于目标性质向量的Con-CDVAE、融合结构约束与引导机制的SCIGEN、通过适配器实现性质调控的微调版MatterGen以及结合隐空间搜索优化的CDVAE隐变量优化策略. 最后总结当前性质导向生成机制面临的挑战, 并展望其未来的发展方向. 本文旨在为研究者深入理解和拓展性质驱动的材料生成方法提供系统性参考和启发.
    In recent years, the application of machine learning in materials science has significantly accelerated the discovery of new materials. In particular, when combined with traditional methods such as first-principles calculations, machine learning models have proven effective in screening potential high-performance materials from existing databases. However, these methods are largely limited by the known chemical spaces, making it difficult to achieve the active design of novel material structures. To overcome this limitation, generative models have become a promising tool for inverse material design, providing new avenues for exploring unknown structures and property spaces. Although existing generative models have achieved initial progress in crystal structure generation, achieving property-guided material generation remains a significant challenge. In this review paper, we first introduce the representative generative models recently applied to materials generation, including CDVAE, MatGAN, and MatterGen, and analyzes their basic abilities and limitations in structural generation. We then focus on strategies for incorporating target properties into generative models to generate the property-guided structure. Specifically, we discuss four representative methods: Con-CDVAE based on target property vectors, SCIGEN with integrated structural constraints and guidance mechanisms, a fine-tuned version of MatterGen leveraging adapter-based property control, and a CDVAE latent space optimization strategy guided by property objectives. Finally, we summarize the key challenges faced by property-guided generative models and provide an outlook on future research directions. This review aims to offer researchers a systematic reference and inspiration for advancing property-driven generative approaches in material design and provides researchers with a systematic reference and insight into the advancement of property-driven generative methods for materials design.
  • 图 1  数据驱动材料设计的两种范式: 正向设计与逆向设计. 图中黑色区域表示材料化学空间中已探索的区域, 彩色点所在的区域表示未探索区域, 黄色点所在的区域表示潜在的高性能材料区域; 正向设计流程(上)从已知材料结构出发, 经第一性原理与机器学习预测逐步筛选候选材料; 逆向设计流程(下)从目标性质出发, 通过生成模型直接生成候选结构

    Fig. 1.  Two paradigms of data-driven materials design: forward design and inverse design.The black region in the figure represents the explored part of the materials chemical space, the region with colored dots indicates the unexplored space, and the region with yellow dots denotes the potential high-performance materials. The forward design process (top) starts from known material structures and gradually screens candidate materials via first-principles calculations and machine learning predictions; the inverse design process (bottom) starts from target properties and directly generates candidate structures through generative models.

    图 2  (a) CDVAE模型的整体框架流程[30]. 模型的输入为晶体的图结构表示, 通过周期性图神经网络(PGNN)进行编码, 结合性质聚合预测器预测结构聚合信息, 并由得分网络[33](图中使用PGNN进行解码的部分)结合朗之万动力学(Langevin dynamics)[34]生成稳定的三维晶体结构; (b) 不同的生成模型在不同的数据集上经过随机采样生成的晶体结构图

    Fig. 2.  (a) Framework of the CDVAE[30]. The model takes the crystal graph representation as input, encodes it using a periodic graph neural network (PGNN) and predicts aggregated structural attributes through a property aggregation predictor. A score-based network[33] (implemented using PGNN in the decoder) combined with Langevin dynamics[34] is then used to generate stable three-dimensional crystal structures. (b) Crystal structures randomly generated by different generative models on different datasets.

    图 3  (a) MatGAN的生成对抗网络架构示意图[31], 模型通过生成器从隐空间中采样隐向量, 生成新的材料组成样本, 判别器判断样本是否来源于真实数据分布, 通过对抗训练优化生成效果; (b) 使用t-SNE[50]方法对材料成分分布可视化降维图, 图中蓝色点为MatGAN生成的样本, 绿色点为训练集样本, 红色点为保留未参与训练的leave-out样本

    Fig. 3.  (a) Schematic diagram of the generative adversarial network architecture of MatGAN[31]. The model samples latent vectors from the latent space via the generator to produce new material compositions, while the discriminator determines whether the samples come from the real data distribution, thereby optimizing the generator through adversarial training. (b) t-SNE[50] visualization of the material composition distribution after dimensionality reduction. Blue points represent samples generated by MatGAN, green points denote training set samples, and red points indicate leave-out samples not used during training.

    图 4  (a) MatterGen的扩散建模流程示意图[25], 正向过程(forward process)通过逐步加噪将稳定结构材料(A0, X0, L0)转化为完全随机结构(AT, XT, LT), 反向过程(reverse process)则利用得分网络(score network)[53]引导去噪, 逐步重建出稳定晶体结构; (b) 等变性得分网络(equivariant score network)结构示意图; (c) 不同生成模型在Materials Project[9]数据集上新颖稳定生成材料的比例对比图; (d) MatterGen生成材料在不同采样规模下的新颖性与唯一性统计图; (e) MatterGen生成的部分代表性新型晶体结构图

    Fig. 4.  (a) Schematic diagram of the diffusion modeling process of MatterGen[25]The forward process gradually corrupts a stable material structure (A0, X0, L0) into a completely random structure (At, Xt, Lt) by adding noise step-by-step, while the reverse process leverages a score network[53] to guide denoising and progressively reconstruct a stable crystal structure. (b) Schematic diagram of the equivariant score network structre. (c) Comparison of the proportion of novel and stable structures generated by different models on the Materials Project[9] dataset. (d) Statistical analysis of the novelty and uniqueness of materials generated by MatterGen at different sampling scales. (e) Representative examples of novel crystal structures generated by MatterGen.

    图 5  (a) Con-CDVAE的训练与生成流程图[22]. 训练阶段包括结构与目标性质的联合编码(encoder)、性质预测器(predictor)和条件解码(decoder), 同时训练先验(prior)模块[14,33]用于实现从目标性质生成隐变量z. 生成阶段中, 输入目标性质后通过先验模块生成隐变量z, 并与通过propemb模块得到的性质嵌入向量进行拼接后得到含有目标性质信息的隐变量zcond, 将zcond送入解码器后生成晶体结构. (b) MP-20[9]训练数据集中材料的带隙分布与形成能分布图. (c) Con-CDVAE在设定的目标性质下的生成材料的性质分布图. (d) Con-CDVAE生成的部分代表性新型晶体结构图

    Fig. 5.  (a) Training and generation workflow of Con-CDVAE[22]. The training phase includes joint encoding of crystal structures and target properties via the encoder, a property predictor, and conditional decoding through the decoder. Simultaneously, a prior module [14,33] is trained to enable the generation of latent variable z from target property inputs. In the generation phase, a target property is first provided, from which a latent variable z is generated using the prior module. This latent variable is then concatenated with a property embedding vector obtained from the propemb module to derive the latent variable zcond conditioned on the target property, which is passed to the decoder to generate crystal structures. (b) Distribution of band gap and formation energy in the MP-20 training dataset[9]. (c) Property distributions of materials generated by Con-CDVAE under different target property settings. (d) Representative novel crystal structures generated by Con-CDVAE.

    图 6  (a) SCIGEN模型的材料结构生成过程示意图[23], 该模型以几何规则为引导, 通过多步扩散与去噪过程, 结合掩码机制, 将具有几何约束的结构与待生成结构融合, 引导生成结构逐步逼近目标结构; (b) SCIGEN的结构生成中几何约束与非约束结构的合并与掩码机制过程图; (c) Lieb晶格的二维示意图; (d) SCIGEN在Lieb几何约束下生成的代表性结构Ce3NaTb4; (e) Ce3NaTb4的能带结构图

    Fig. 6.  (a)Schematic illustration of the material structure generation process in the SCIGEN model[23]. The model is guided by geometric rules and utilizes a multi-step diffusion and denoising process, combined with a masking mechanism, to integrate geometrically constrained structures with unconstrained ones, thereby gradually guiding the generation toward the target structure. (b) Diagram showing the merging of constrained and unconstrained structures and the masking mechanism used in SCIGEN during structure generation. (c) A 2D schematic of the Lieb lattice. (d) A representative structure, Ce3NaTb4, generated by SCIGEN under Lieb lattice constraints. (e) Band structure of the generated Ce3NaTb4 material.

    图 7  (a) MatterGen微调阶段的模型结构示意图[25], 目标性质c被送入适配器模块(adapter module), 并与等变性得分网络(equivariant score network)的输出结合, 引导结构从随机状态逐步恢复至符合目标性质的晶体结构; (b) MatterGen在不同目标性质条件控制下生成满足不同目标性质的晶体结构; (c)—(e) MatterGen在目标性质分别为磁密度(c)、带隙(d)、体积模量(e)的条件下生成材料与对应微调数据集的材料的性质分布图; (f) 实验上成功合成的MatterGen以体积模量200 GPa为目标性质生成的TaCr2O6结构图; (g) MatterGen在目标性质为不同体积模量条件下生成材料的性质的DFT验证结果图

    Fig. 7.  (a) Schematic illustration of the MatterGen model during the fine-tuning stage[25]. The target property condition c is fed into the adapter module and combined with the output of the equivariant score network to guide the generation process from random structures toward crystal structures satisfying the target property. (b) MatterGen-generated crystal structures under different target property constraints, demonstrating the model’s ability to satisfy various design conditions. (c)–(e) Property distribution comparisons between MatterGen-generated materials and the fine-tuning dataset under target conditions of magnetic density (c), bandgap (d), and bulk modules (e). (f) Structure of TaCr2O6, successfully synthesized experimentally, generated by MatterGen with a target bulk modulus of 200 GPa. (g) DFT-validated property results of structures generated by MatterGen under different target bulk modulus values, illustrating the model’s predictive accuracy and target controllability.

    图 8  (a) MAGECS(materials generation with efficient global chemical space search)框架结构图[26], 该框架包括生成模型CDVAE、监督图神经网络GNN和鸟群算法BSA, 通过在隐空间中搜索最优隐变量以生成满足目标性质的材料结构; (b) MAGECS, CDVAE生成结构和原始数据库结构在目标性质区间$ \left| {\Delta {E_{{\text{CO}}}} + {\text{ }}0.67} \right|{\text{ }} \leqslant {\text{ }}0.2{\text{ eV}} $ 的分布对比图; (c) 实验上成功合成的MAGECS生成的5种具有目标性质的结构; (d) CuAl和Pd5Sn2的电催化CO2还原反应性能曲线

    Fig. 8.  (a) Framework diagram of MAGECS (materials generation with efficient global chemical space search)[26]. The framework integrates a generative model (CDVAE), a supervised graph neural network (GNN), and a bird swarm algorithm (BSA) to search for optimal latent vectors in the latent space and generate materials that meet target properties. (b) Comparison of the distribution of structures from MAGECS, CDVAE, and the original database within the target property range $ \left| {\Delta {E_{{\text{CO}}}} + {\text{ }}0.67} \right|{\text{ }} \leqslant {\text{ }}0.2{\text{ eV}} $. (c) Five target-property-aligned structures generated by MAGECS and successfully synthesized in experiments. (d) Electrocatalytic CO2 reduction performance curves of CuAl and Pd5Sn2.

    图 9  三种将目标性质导向机制引入生成模型的方法

    Fig. 9.  Three methods for incorporating property-guidance mechanisms into generative models.

    表 1  不同的生成模型在不同的数据集上生成的结构在多个评估指标下的性能对比[30]

    Table 1.  Comparison of generative model performance across datasets and evaluation metrics[30].

    Method Data Validity/% COV/% Property statistics
    Struc. Comp. R. P. ρ E # elem.
    FTCP Perov-5 0.24 54.24 0.10 0.00 10.27 156.0 0.6297
    Carbon-24 0.08 0.00 0.00 5.206 19.05
    MP-20 1.55 48.37 4.72 0.09 23.71 160.9 0.7363
    Cond-DFC-VAE Perov-5 73.60 82.95 73.92 10.13 2.268 4.111 0.8373
    G-SchNet Perov-5 99.92 98.79 0.18 0.23 1.625 4.746 0.03684
    Carbon-24 99.94 0.00 0.00 0.9427 1.320
    MP-20 99.65 75.96 38.33 99.57 3.034 42.09 0.6411
    P-G-SchNet Perov-5 79.63 99.13 0.37 0.25 0.2755 1.388 0.4552
    Carbon-24 48.39 0.00 0.00 1.533 134.7
    MP-20 77.51 76.40 41.93 99.74 4.04 2.448 0.6234
    CDVAE Perov-5 100.0 98.59 99.45 98.46
    0.1258 0.0264 0.0628
    Carbon-24 100.0 99.80 83.08 0.1407 0.2850
    MP-20 100.0 86.70 99.15 99.49 0.6875 0.2778 1.432
    下载: 导出CSV

    表 2  MatGAN在OQMD[8], Materials Project[9]与ICSD[7]三个数据库上的结构复现与新颖性统计[31]

    Table 2.  Statistical results of structural recovery and novelty of MatGAN on the OQMD[8], Materials Project[9], and ICSD[7] databases[31].

    GAN-OQMDGAN-MPGAN-ICSD
    Training sample #2513685753025323
    Leave out sample #2792963922813
    Generated sample #200000020000002000000
    Recovery of training
    samples/%
    60.2647.3659.54
    Recovery of leave out/% 60.4348.8260.13
    New samples183164819696331983231
    下载: 导出CSV

    表 3  三类性质导向方法在不同性质上的引导效果

    Table 3.  Effectiveness of three property-targeted methods across various properties.

    Method Data Training sample Success rate/%
    Ef Eg M K ΔECO
    Con-CDVAE[22] MP-20 71,665 36.3 18.4
    MP-40 108,039 40.1 20.7
    OQMD 616,412 38.8 19.3
    MatterGen[25] Alex-MP-20 607,683 31.6 48.7 55.4
    MAGECS[26] GASpy 13, 000 34.4
    下载: 导出CSV
  • [1]

    Jiang X, Xue D Z, Bai Y, Wang W Y, Liu J J, Yang M L, Su Y J 2025 Rev. Mater. Res. 1 100010

    [2]

    Wu M F, Zhang S Y, Ren J 2025 APL Mater. 13 020601Google Scholar

    [3]

    Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 624 80Google Scholar

    [4]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547Google Scholar

    [5]

    Zhong M, Tran K, Min Y M, Wang C H, Wang Z Y, Dinh C T, De Luna P, Yu Z Q, Rasouli A S, Brodersen P, Sun S, Voznyy O, Tan C S, Askerka M, Che F L, Liu M, Seifitokaldani A, Pang Y J, Lo S C, Ip A, Ulissi Z, Sargent E H 2020 Nature 581 178Google Scholar

    [6]

    Rao Z Y, Tung P Y, Xie R W, Wei Y, Zhang H B, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z M, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78Google Scholar

    [7]

    Hellenbrandt M 2004 Crystallogr. Rev. 10 17Google Scholar

    [8]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 1

    [9]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002Google Scholar

    [10]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002Google Scholar

    [11]

    Lu S H, Zhou Q H, Chen X Y, Song Z L, Wang J L 2022 Natl. Sci. Rev. 9 nwac111Google Scholar

    [12]

    Kingma D P, Welling M 2019 Found. Trends Mach. Learn. 12 307Google Scholar

    [13]

    Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 arXiv: 1406.2661v1 [stat. ML]

    [14]

    Ho J, Jain A, Abbeel P 2020 arXiv: 2006.11239v2 [cs. LG]

    [15]

    Stimper V, Liu D, Campbell A, Berenz V, Ryll L, Schölkopf B, Hernández-Lobato J M 2023 J. Open Source Softw. 8 5361Google Scholar

    [16]

    Hoogeboom E, Gritsenko A A, Bastings J, Poole B, Berg R van den, Salimans T 2022 arXiv: 2110.02037v2 [cs. LG]

    [17]

    Hong T, Chen T K, Jin D L, Zhu Y, Gao H, Zhao K, Zhang T Y, Ren W, Cao G X 2025 npj Quantum Mater. 10 12Google Scholar

    [18]

    Jin L Z, Du Z J, Shu L, Cen Y, Xu Y F, Mei Y F, Zhang H 2025 Nat. Commun. 16 1210Google Scholar

    [19]

    Sanchez-Lengeling B, Aspuru-Guzik A 2018 Science 361 360Google Scholar

    [20]

    Zhang K, Chen T, Abbas Y, Jan S U, Zhou Z H, Chu S Q, Xie G C, Ullah S, Akram M Z, Zhang J, Xuan Y M, Gong J R 2021 Matter 4 1054Google Scholar

    [21]

    Manzoor A, Zhang Y, Aidhy D S 2021 Comput. Mater. Sci 198 110669Google Scholar

    [22]

    Ye C Y, Weng H M, Wu Q S 2024 Comput. Mater. Today 1 100003Google Scholar

    [23]

    Okabe R, Cheng M, Chotrattanapituk A, Hung N T, Fu X, Han B, Wang Y, Xie W, Cava R J, Jaakkola T S, Cheng Y, Li M 2024 arXiv: 2407.04557v1 [cond-mat. mtrl-sci]

    [24]

    Ye C, Wang Y, Xie X, Zhu T, Liu J, He Y, Zhang L, Zhang J, Fang Z, Wang L, Liu Z, Weng H, Wu Q 2025 arXiv: 2505.00076v1 [cond-mat. mtrl-sci]

    [25]

    Zeni C, Pinsler R, Zügner D, Fowler A, Horton M, Fu X, Wang Z, Shysheya A, Crabbé J, Ueda S, Sordillo R, Sun L, Smith J, Nguyen B, Schulz H, Lewis S, Huang C W, Lu Z, Zhou Y, Yang H, Hao H, Li J, Yang C, Li W, Tomioka R, Xie T 2025 Nature 639 624Google Scholar

    [26]

    Song Z L, Fan L F, Lu S H, Ling C Y, Zhou Q H, Wang J L 2025 Nat. Commun. 16 1053Google Scholar

    [27]

    Chen X Y, Lu S H, Chen Q, Zhou Q H, Wang J L 2024 Nat. Commun. 15 5391Google Scholar

    [28]

    Choudhary K 2024 arXiv: 2405.03680v2 [cond-mat. mtrl-sci]

    [29]

    Lu S H, Zhou Q H, Guo Y L, Wang J L 2022 Chem 8 769Google Scholar

    [30]

    Xie T, Fu X, Ganea O E, Barzilay R, Jaakkola T 2021 arXiv: 2110.06197v3 [cs. LG]

    [31]

    Dan Y B, Zhao Y, Li X, Li S B, Hu M, Hu J J 2020 npj Comput. Mater. 6 84Google Scholar

    [32]

    Kingma D P, Welling M 2022 arXiv: 1312.6114v11 [stat. ML]

    [33]

    Song Y, Ermon S 2019 Proceedings of the 32nd Annual Conference on Neural Information Processing Systems Vancouver, Canada, December 8-14, 2019 p11895

    [34]

    Lemons D S, Gythiel A 1997 Am. J. Phys. 65 1079Google Scholar

    [35]

    Chen S, Ge C, Zhang S, Sun P, Luo P 2025 arXiv: 2504.07963v1 [cs. CV]

    [36]

    Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J 2020 arXiv: 2001.09382v2 [cs. LG]

    [37]

    Xu M, Yu L, Song Y, Shi C, Ermon S, Tang J 2022 arXiv: 2203.02923v1 [cs. LG]

    [38]

    Castelli I E, Landis D D, Thygesen K S, Dahl S, Chorkendorff I, Jaramillo T F, Jacobsen K W 2012 Energy Environ. Sci. 5 9034Google Scholar

    [39]

    Pickard C J https://archive.materialscloud.org/record/2020.0026/v1 [2024-04-20]

    [40]

    Ren Z K, Tian S I P, Noh J, Oviedo F, Xing G Z, Li J L, Liang Q H, Zhu R M, Aberle A G, Sun S J, Wang X N, Liu Y, Li Q X, Jayavelu S, Hippalgaonkar K, Jung Y, Buonassisi T 2022 Matter 5 314Google Scholar

    [41]

    Court C J, Yildirim B, Jain A, Cole J M 2020 J. Chem. Inf. Model. 60 4518Google Scholar

    [42]

    Gebauer N W A, Gastegger M, Schütt K T 2020 arXiv: 1906.00957v3 [stat. ML]

    [43]

    Davies D W, Butler K T, Jackson A J, Skelton J M, Morita K, Walsh A 2019 J. Open Source Softw. 4 1361Google Scholar

    [44]

    Xu M, Luo S, Bengio Y, Peng J, Tang J 2021 arXiv: 2102.10240v3 [cs. LG]

    [45]

    Ganea O E, Pattanaik L, Coley C W, Barzilay R, Jensen K F, Green W H, Jaakkola T S 2021 arXiv: 2106.07802v1 [physics. chem-ph]

    [46]

    Zhang H, Georgescu A B, Yerramilli S, Karpovich C, Apley D W, Olivetti E A, Rondinelli J M, Chen W 2025 arXiv: 2412.17283v2 [cond-mat. mtrl-sci]

    [47]

    Murphy L R, Meek T L, Allred A L, Allen L C 2000 J. Phys. Chem. A 104 5867Google Scholar

    [48]

    Sessa F, Rahm M 2022 J. Phys. Chem. A 126 5472Google Scholar

    [49]

    Arjovsky M, Chintala S, Bottou L 2017 arXiv: 1701.07875v3 [stat. ML]

    [50]

    Maaten L van der, Hinton G 2008 J. Mach. Learn. Res. 9 2579

    [51]

    Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Van Duren J, Zakutayev A 2017 Appl. Phys. Rev. 4 011105Google Scholar

    [52]

    Pickard C J, Needs R J 2011 J. Phys. Condens. Matter 23 053201Google Scholar

    [53]

    Song Y, Sohl-Dickstein J, Kingma D P, Kumar A, Ermon S, Poole B 2021 arXiv: 2011.13456v2 [cs. LG]

    [54]

    Schmidt J, Wang H C, Cerqueira T F T, Botti S, Marques M A L 2022 Sci. Data 9 64Google Scholar

    [55]

    Jiao R, Huang W, Lin P, Han J, Chen P, Lu Y, Liu Y 2023 arXiv: 2309.04475v2 [cond-mat. mtrl-sci]

    [56]

    Sultanov A, Crivello J C, Rebafka T, Sokolovska N 2023 J. Chem. Inf. Model. 63 6986Google Scholar

    [57]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301Google Scholar

    [58]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 1Google Scholar

    [59]

    Han X Q, Wang X D, Xu M Y, Feng Z, Yao B W, Guo P J, Gao Z F, Lu Z Y 2025 Chin. Phys. Lett. 42 027403Google Scholar

    [60]

    Long T, Zhang Y, Zhang H 2024 arXiv: 2409.19124v1 [cond-mat. mtrl-sci]

    [61]

    Chen L, Zhang W, Nie Z, Li S, Pan F 2021 J. Mater. Inform. 1 N/A

    [62]

    Chen Y, Wang X, Deng X, Liu Y, Chen X, Zhang Y, Wang L, Xiao H 2024 arXiv: 2408.07608v1 [cond-mat. mtrl-sci]

    [63]

    New A, Pekala M, Pogue E A, Le N Q, Domenico J, Piatko C D, Stiles C D 2023 arXiv: 2309.12323v1 [cond-mat. mtrl-sci]

    [64]

    Banik S, Dhabal D, Chan H, Manna S, Cherukara M, Molinero V, Sankaranarayanan S K R S 2023 npj Comput. Mater. 9 1Google Scholar

    [65]

    Cao Z, Luo X, Lv J, Wang L 2024 arXiv: 2403.15734v2 [cond-mat. mtrl-sci]

    [66]

    Yang S, Cho K, Merchant A, Abbeel P, Schuurmans D, Mordatch I, Cubuk E D 2024 arXiv: 2311.09235v2 [cs. LG]

    [67]

    Jiao R, Huang W, Liu Y, Zhao D, Liu Y 2024 arXiv: 2402.03992v2 [cs. LG]

    [68]

    Tsai W F, Fang C, Yao H, Hu J 2015 New J. Phys. 17 055016Google Scholar

    [69]

    Ho J, Salimans T 2022 arXiv: 2207.12598v1 [cs. LG]

    [70]

    Zhang L, Rao A, Agrawala M 2023 arXiv: 2302.05543v3 [cs. CV]

    [71]

    Shuaibi M, Kolluru A, Das A, Grover A, Sriram A, Ulissi Z, Zitnick C L 2021 arXiv: 2106.09575v1 [cs. LG]

    [72]

    Guo Z, Zhang C, Yu W, Herr J, Wiest O, Jiang M, Chawla N V 2021 arXiv: 2102.07916v1 [cs. LG]

    [73]

    Ryan K, Lengyel J, Shatruk M 2018 J. Am. Chem. Soc. 140 10158Google Scholar

    [74]

    Chenebuah E T, Nganbe M, Tchagang A B 2024 npj Comput. Mater. 10 198Google Scholar

    [75]

    Fung V, Zhang J, Juarez E, Sumpter B G 2021 npj Comput. Mater. 7 1Google Scholar

    [76]

    Varol Altay E, Alatas B 2020 Artif. Intell. Rev. 53 1373Google Scholar

    [77]

    Butler K T, Choudhary K, Csanyi G, Ganose A M, Kalinin S V, Morgan D 2024 npj Comput. Mater. 10 1Google Scholar

    [78]

    Wu Y L, Li X Y, Guo R, Xu R Q, Ju M G, Wang J L 2025 Natl. Sci. Rev 12 nwaf081Google Scholar

    [79]

    Song Z L, Lu S H, Ju M G, Zhou Q H, Wang J L 2025 Nat. Commun. 16 6530Google Scholar

    [80]

    Seko A, Hayashi H, Tanaka I 2018 J. Chem. Phys. 148 241719Google Scholar

  • [1] 王越, 叶函函, 熊伟, 王先华, 施海亮, 李超, 程晨, 吴时超. 一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法. 物理学报, doi: 10.7498/aps.74.20250982
    [2] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, doi: 10.7498/aps.74.20241458
    [3] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [4] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [5] 梁晨, 卢少瑜, 黄栋, 陈鑫, 冯岩. 基于机器学习从单颗粒动力学中诊断尘埃等离子体全局性质信息. 物理学报, doi: 10.7498/aps.74.20251129
    [6] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性. 物理学报, doi: 10.7498/aps.74.20250362
    [7] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [8] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [9] 居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰. 数字型太赫兹带通滤波器的逆向设计及优化. 物理学报, doi: 10.7498/aps.73.20231584
    [10] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [11] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [12] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [13] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器. 物理学报, doi: 10.7498/aps.72.20230459
    [14] 杨建宇, 席昆, 竺立哲. 生物大分子过渡态搜索算法及其中的机器学习. 物理学报, doi: 10.7498/aps.72.20231319
    [15] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, doi: 10.7498/aps.72.20230646
    [16] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, doi: 10.7498/aps.71.20211632
    [17] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器. 物理学报, doi: 10.7498/aps.71.20220328
    [18] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [19] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法. 物理学报, doi: 10.7498/aps.70.20200825
    [20] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
计量
  • 文章访问数:  639
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-07-24
  • 修回日期:  2025-09-10
  • 上网日期:  2025-10-11

/

返回文章
返回