搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

目标性质导向的材料生成: 迈向按需构筑的材料逆向设计

刘章赫 陈新宇 周跫桦 王金兰

引用本文:
Citation:

目标性质导向的材料生成: 迈向按需构筑的材料逆向设计

刘章赫, 陈新宇, 周跫桦, 王金兰

Target-property-guided material generation: towards on-demand inverse design of materials

LIU Zhanghe, CHEN Xinyu, ZHOU Qionghua, WANG Jinlan
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 近年来,机器学习在材料科学中的应用显著加快了新材料的发现,特别是在结合第一性原理计算等传统方法后,能够高效筛选已有数据库中的潜在高性能材料.然而,此类方法大多局限于已有化学空间,难以实现对全新材料结构的主动设计.为突破这一瓶颈,基于生成模型的材料逆向设计方法逐渐兴起,成为探索未知结构与性质空间的重要手段.尽管当前生成模型在晶体结构生成方面取得了初步进展,但如何实现目标性质导向的材料生成仍面临显著挑战.本文首先介绍了近年来在材料生成领域中具有代表性的生成模型,包括 CDVAE、 MatGAN 以及 MatterGen,分析其在结构生成上的基本能力与局限.随后重点探讨如何将目标性质有效引入生成模型,实现性质导向的结构生成, 具体包括: 基于目标性质向量的 Con-CDVAE、 融合结构约束与引导机制的 SCIGEN、 通过适配器实现性质调控的微调版 MatterGen 以及结合隐空间搜索优化的 CDVAE隐变量优化策略.最后总结当前性质导向生成机制面临的挑战,并展望其未来的发展方向.本文旨在为研究者深入理解和拓展性质驱动的材料生成方法提供系统性参考和启发.
    In recent years, the application of machine learning in materials science has significantly accelerated the discovery of new materials. In particular, when combined with traditional methods such as first-principles calculations, machine learning models have proven effective in screening potential high-performance materials from existing databases. However, these approaches are largely constrained within known chemical spaces and struggle to enable the active design of entirely novel material structures. To overcome this limitation, generative models have emerged as a promising tool for inverse material design, offering new avenues to explore unknown structural and property spaces. Although existing generative models have achieved initial progress in crystal structure generation, achieving property-guided material generation remains a significant challenge. This review first introduces representative generative models recently applied to materials generation, including CDVAE, MatGAN, and MatterGen, and analyzes their fundamental capabilities and limitations in structural generation. We then focus on strategies for incorporating target properties into generative models to achieve property-directed structure generation. Specifically, we discuss four representative approaches: Con-CDVAE based on target property vectors, SCIGEN with integrated structural constraints and guidance mechanisms, a fine-tuned version of MatterGen leveraging adapter-based property control, and a CDVAE latent space optimization strategy guided by property objectives. Finally, we summarize the key challenges faced by property-guided generative models and provide an outlook on future research directions. This review aims to offer researchers a systematic reference and inspiration for advancing property-driven generative approaches in material design. This work aims to provide researchers with a systematic reference and insight into the advancement of property-driven generative methods for materials design.
  • [1]

    Jiang X, Xue D, Bai Y, Wang W Y, Liu J, Yang M, Su Y 2025 Rev. Mater. Res. 1 100010

    [2]

    Wu M, Zhang S, Ren J 2025 APL Mater. 13 020601

    [3]

    Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 624 80

    [4]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547

    [5]

    Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh C T, De Luna P, Yu Z, Rasouli A S, Brodersen P, Sun S, Voznyy O, Tan C S, Askerka M, Che F, Liu M, Seifitokaldani A, Pang Y, Lo S C, Ip A, Ulissi Z, Sargent E H 2020 Nature 581 178

    [6]

    Rao Z, Tung P Y, Xie R, Wei Y, Zhang H, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78

    [7]

    Hellenbrandt M 2004 Crystallogr. Rev. 10 17

    [8]

    Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 1

    [9]

    Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002

    [10]

    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002

    [11]

    Lu S, Zhou Q, Chen X, Song Z, Wang J 2022 Natl. Sci. Rev. 9 nwac111

    [12]

    Kingma D P, Welling M 2019 Found. Trends Mach. Learn. 12 307

    [13]

    Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 arXiv:1406.2661v1[stat.ML]

    [14]

    Ho J, Jain A, Abbeel P 2020 arXiv:2006.11239v2[cs.LG]

    [15]

    Stimper V, Liu D, Campbell A, Berenz V, Ryll L, Schölkopf B, Hernández-Lobato J M 2023 J. Open Source Softw. 8 5361

    [16]

    Hoogeboom E, Gritsenko A A, Bastings J, Poole B, Berg R van den, Salimans T 2022 arXiv:2110.02037v2[cs.LG]

    [17]

    Hong T, Chen T, Jin D, Zhu Y, Gao H, Zhao K, Zhang T, Ren W, Cao G 2025 npj Quantum Mater. 10 1

    [18]

    Jin L, Du Z, Shu L, Cen Y, Xu Y, Mei Y, Zhang H 2025 Nat. Commun. 16 1210

    [19]

    Sanchez-Lengeling B, Aspuru-Guzik A 2018 Science 361 360

    [20]

    Zhang K, Chen T, Abbas Y, Jan S U, Zhou Z, Chu S, Xie G, Ullah S, Akram M Z, Zhang J, Xuan Y, Gong J R 2021 Matter 4 1054

    [21]

    Manzoor A, Zhang Y, Aidhy D S 2021 Comput. Mater. Sci 198 110669

    [22]

    Ye C Y, Weng H M, Wu Q S 2024 Comput. Mater. Today 1 100003

    [23]

    Okabe R, Cheng M, Chotrattanapituk A, Hung N T, Fu X, Han B, Wang Y, Xie W, Cava R J, Jaakkola T S, Cheng Y, Li M 2024 arXiv:2407.04557v1[cond-mat.mtrl-sci]

    [24]

    Ye C, Wang Y, Xie X, Zhu T, Liu J, He Y, Zhang L, Zhang J, Fang Z, Wang L, Liu Z, Weng H, Wu Q 2025 arXiv:2505.00076v1[cond-mat.mtrl-sci]

    [25]

    Zeni C, Pinsler R, Zügner D, Fowler A, Horton M, Fu X, Wang Z, Shysheya A, Crabbé J, Ueda S, Sordillo R, Sun L, Smith J, Nguyen B, Schulz H, Lewis S, Huang C W, Lu Z, Zhou Y, Yang H, Hao H, Li J, Yang C, Li W, Tomioka R, Xie T 2025 Nature 639 624

    [26]

    Song Z, Fan L, Lu S, Ling C, Zhou Q, Wang J 2025 Nat. Commun. 16 1053

    [27]

    Chen X, Lu S, Chen Q, Zhou Q, Wang J 2024 Nat. Commun. 15 5391

    [28]

    Choudhary K 2024 arXiv:2405.03680v2[cond-mat.mtrl-sci]

    [29]

    Lu S, Zhou Q, Guo Y, Wang J 2022 Chem 8 769

    [30]

    Xie T, Fu X, Ganea O E, Barzilay R, Jaakkola T 2021 arXiv:2110.06197v3[cs.LG]

    [31]

    Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J 2020 npj Comput. Mater. 6 1

    [32]

    Kingma D P, Welling M 2022 arXiv:1312.6114v11[stat.ML]

    [33]

    Song Y, Ermon S 2019 Proceedings of the 32nd Annual Conference on Neural Information Processing Systems Vancouver, Canada, December 8-14, 2019 p11895

    [34]

    Lemons D S, Gythiel A 1997 Am. J. Phys. 65 1079

    [35]

    Chen S, Ge C, Zhang S, Sun P, Luo P 2025 arXiv:2504.07963v1[cs.CV]

    [36]

    Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J 2020 arXiv:2001.09382v2[cs.LG]

    [37]

    Xu M, Yu L, Song Y, Shi C, Ermon S, Tang J 2022 arXiv:2203.02923v1[cs.LG]

    [38]

    Castelli I E, Landis D D, Thygesen K S, Dahl S, Chorkendorff I, Jaramillo T F, Jacobsen K W 2012 Energy Environ. Sci. 5 9034

    [39]

    Pickard C J https://archive.materialscloud.org/record/2020.0026/v1[2024-04-20]

    [40]

    Ren Z, Tian S I P, Noh J, Oviedo F, Xing G, Li J, Liang Q, Zhu R, Aberle A G, Sun S, Wang X, Liu Y, Li Q, Jayavelu S, Hippalgaonkar K, Jung Y, Buonassisi T 2022 Matter 5 314

    [41]

    Court C J, Yildirim B, Jain A, Cole J M 2020 J. Chem. Inf. Model. 60 4518

    [42]

    Gebauer N W A, Gastegger M, Schütt K T 2020 arXiv:1906.00957v3[stat.ML]

    [43]

    Davies D W, Butler K T, Jackson A J, Skelton J M, Morita K, Walsh A 2019 J. Open Source Softw. 4 1361

    [44]

    Xu M, Luo S, Bengio Y, Peng J, Tang J 2021 arXiv:2102.10240v3[cs.LG]

    [45]

    Ganea O E, Pattanaik L, Coley C W, Barzilay R, Jensen K F, Green W H, Jaakkola T S 2021 arXiv:2106.07802v1[physics.chem-ph]

    [46]

    Zhang H, Georgescu A B, Yerramilli S, Karpovich C, Apley D W, Olivetti E A, Rondinelli J M, Chen W 2025 arXiv:2412.17283v2[cond-mat.mtrl-sci]

    [47]

    Murphy L R, Meek T L, Allred A L, Allen L C 2000 J. Phys. Chem. A 104 5867

    [48]

    Sessa F, Rahm M 2022 J. Phys. Chem. A 126 5472

    [49]

    Arjovsky M, Chintala S, Bottou L 2017 arXiv:1701.07875v3[stat.ML]

    [50]

    Maaten L van der, Hinton G 2008 J. Mach. Learn. Res. 9 2579

    [51]

    Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Van Duren J, Zakutayev A 2017 Appl. Phys. Rev. 4 011105

    [52]

    Pickard C J, Needs R J 2011 J. Phys. Condens. Matter 23 053201

    [53]

    Song Y, Sohl-Dickstein J, Kingma D P, Kumar A, Ermon S, Poole B 2021 arXiv:2011.13456v2[cs.LG]

    [54]

    Schmidt J, Wang H C, Cerqueira T F T, Botti S, Marques M A L 2022 Sci. Data 9 64

    [55]

    Jiao R, Huang W, Lin P, Han J, Chen P, Lu Y, Liu Y 2023 arXiv:2309.04475v2[cond-mat.mtrl-sci]

    [56]

    Sultanov A, Crivello J C, Rebafka T, Sokolovska N 2023 J. Chem. Inf. Model. 63 6986

    [57]

    Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301

    [58]

    Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 1

    [59]

    Han X Q, Wang X D, Xu M Y, Feng Z, Yao B W, Guo P J, Gao Z F, Lu Z Y 2025 Chin. Phys. Lett. 42 027403

    [60]

    Long T, Zhang Y, Zhang H 2024 arXiv:2409.19124v1[cond-mat.mtrl-sci]

    [61]

    Chen L, Zhang W, Nie Z, Li S, Pan F 2021 J. Mater. Inform. 1 N/A

    [62]

    Chen Y, Wang X, Deng X, Liu Y, Chen X, Zhang Y, Wang L, Xiao H 2024 arXiv:2408.07608v1[cond-mat.mtrl-sci]

    [63]

    New A, Pekala M, Pogue E A, Le N Q, Domenico J, Piatko C D, Stiles C D 2023 arXiv:2309.12323v1[cond-mat.mtrl-sci]

    [64]

    Banik S, Dhabal D, Chan H, Manna S, Cherukara M, Molinero V, Sankaranarayanan S K R S 2023 npj Comput. Mater. 9 1

    [65]

    Cao Z, Luo X, Lv J, Wang L 2024 arXiv:2403.15734v2[cond-mat.mtrl-sci]

    [66]

    Yang S, Cho K, Merchant A, Abbeel P, Schuurmans D, Mordatch I, Cubuk E D 2024 arXiv:2311.09235v2[cs.LG]

    [67]

    Jiao R, Huang W, Liu Y, Zhao D, Liu Y 2024 arXiv:2402.03992v2[cs.LG]

    [68]

    Tsai W F, Fang C, Yao H, Hu J 2015 New J. Phys. 17 055016

    [69]

    Ho J, Salimans T 2022 arXiv:2207.12598v1[cs.LG]

    [70]

    Zhang L, Rao A, Agrawala M 2023 arXiv:2302.05543v3[cs.CV]

    [71]

    Shuaibi M, Kolluru A, Das A, Grover A, Sriram A, Ulissi Z, Zitnick C L 2021 arXiv:2106.09575v1[cs.LG]

    [72]

    Guo Z, Zhang C, Yu W, Herr J, Wiest O, Jiang M, Chawla N V 2021 arXiv:2102.07916v1[cs.LG]

    [73]

    Ryan K, Lengyel J, Shatruk M 2018 J. Am. Chem. Soc. 140 10158

    [74]

    Chenebuah E T, Nganbe M, Tchagang A B 2024 npj Comput. Mater. 10 198

    [75]

    Fung V, Zhang J, Juarez E, Sumpter B G 2021 npj Comput. Mater. 7 1

    [76]

    Varol Altay E, Alatas B 2020 Artif. Intell. Rev. 53 1373

    [77]

    Butler K T, Choudhary K, Csanyi G, Ganose A M, Kalinin S V, Morgan D 2024 npj Comput. Mater. 10 1

    [78]

    Wu Y, Li X, Guo R, Xu R, Ju M G, Wang J 2025 Natl. Sci. Rev 12 nwaf081

    [79]

    Song Z, Lu S, Ju M, Zhou Q, Wang J 2025 Nat. Commun. 16 6530

    [80]

    Seko A, Hayashi H, Tanaka I 2018 J. Chem. Phys. 148 241719

  • [1] 王越, 叶函函, 熊伟, 王先华, 施海亮, 李超, 程晨, 吴时超. 一种光谱特征增强驱动的机器学习地基红外高光谱云检测方法. 物理学报, doi: 10.7498/aps.74.20250982
    [2] 郭焱, 吕恒, 丁春玲, 袁晨智, 金锐博. 分数阶涡旋光衍射过程的机器学习识别. 物理学报, doi: 10.7498/aps.74.20241458
    [3] 张童, 王加豪, 田帅, 孙旭冉, 李日. 基于机器学习的铸件凝固过程动态收缩行为. 物理学报, doi: 10.7498/aps.74.20241581
    [4] 王鹏, 麦麦提尼亚孜·麦麦提阿卜杜拉. 机器学习的量子动力学. 物理学报, doi: 10.7498/aps.74.20240999
    [5] 梁晨, 卢少瑜, 黄栋, 陈鑫, 冯岩. 基于机器学习从单颗粒动力学中诊断尘埃等离子体全局性质信息. 物理学报, doi: 10.7498/aps.74.20251129
    [6] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性. 物理学报, doi: 10.7498/aps.74.20250362
    [7] 张旭, 丁进敏, 侯晨阳, 赵一鸣, 刘鸿维, 梁生. 基于机器学习的激光匀光整形方法. 物理学报, doi: 10.7498/aps.73.20240747
    [8] 张嘉晖. 蛋白质计算中的机器学习. 物理学报, doi: 10.7498/aps.73.20231618
    [9] 居学尉, 张林烽, 黄峰, 朱国锋, 李淑锦, 陈燕青, 王嘉勋, 钟舜聪, 陈盈, 王向峰. 数字型太赫兹带通滤波器的逆向设计及优化. 物理学报, doi: 10.7498/aps.73.20231584
    [10] 郭唯琛, 艾保全, 贺亮. 机器学习回归不确定性揭示自驱动活性粒子的群集相变. 物理学报, doi: 10.7498/aps.72.20230896
    [11] 刘烨, 牛赫然, 李兵兵, 马欣华, 崔树旺. 机器学习在宇宙线粒子鉴别中的应用. 物理学报, doi: 10.7498/aps.72.20230334
    [12] 管星悦, 黄恒焱, 彭华祺, 刘彦航, 李文飞, 王炜. 生物分子模拟中的机器学习方法. 物理学报, doi: 10.7498/aps.72.20231624
    [13] 张伊祎, 韦雪玲, 农洁, 马汉斯, 叶子阳, 徐文杰, 张振荣, 杨俊波. 基于直接二进制搜索算法设计的超紧凑In2Se3可调控功率分束器. 物理学报, doi: 10.7498/aps.72.20230459
    [14] 杨建宇, 席昆, 竺立哲. 生物大分子过渡态搜索算法及其中的机器学习. 物理学报, doi: 10.7498/aps.72.20231319
    [15] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, doi: 10.7498/aps.72.20230646
    [16] 柯航, 李培丽, 施伟华. 基于下山单纯形算法逆向设计二维光子晶体波导型1×5分束器. 物理学报, doi: 10.7498/aps.71.20220328
    [17] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [18] 王志鹏, 王秉中, 刘金品, 王任. 实现散射场强整形的微散射体阵列逆向设计方法. 物理学报, doi: 10.7498/aps.70.20200825
    [19] 林键, 叶梦, 朱家纬, 李晓鹏. 机器学习辅助绝热量子算法设计. 物理学报, doi: 10.7498/aps.70.20210831
    [20] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, doi: 10.7498/aps.68.20190942
计量
  • 文章访问数:  20
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-11

/

返回文章
返回