-
近年来,机器学习在材料科学中的应用显著加快了新材料的发现,特别是在结合第一性原理计算等传统方法后,能够高效筛选已有数据库中的潜在高性能材料.然而,此类方法大多局限于已有化学空间,难以实现对全新材料结构的主动设计.为突破这一瓶颈,基于生成模型的材料逆向设计方法逐渐兴起,成为探索未知结构与性质空间的重要手段.尽管当前生成模型在晶体结构生成方面取得了初步进展,但如何实现目标性质导向的材料生成仍面临显著挑战.本文首先介绍了近年来在材料生成领域中具有代表性的生成模型,包括 CDVAE、 MatGAN 以及 MatterGen,分析其在结构生成上的基本能力与局限.随后重点探讨如何将目标性质有效引入生成模型,实现性质导向的结构生成, 具体包括: 基于目标性质向量的 Con-CDVAE、 融合结构约束与引导机制的 SCIGEN、 通过适配器实现性质调控的微调版 MatterGen 以及结合隐空间搜索优化的 CDVAE隐变量优化策略.最后总结当前性质导向生成机制面临的挑战,并展望其未来的发展方向.本文旨在为研究者深入理解和拓展性质驱动的材料生成方法提供系统性参考和启发.In recent years, the application of machine learning in materials science has significantly accelerated the discovery of new materials. In particular, when combined with traditional methods such as first-principles calculations, machine learning models have proven effective in screening potential high-performance materials from existing databases. However, these approaches are largely constrained within known chemical spaces and struggle to enable the active design of entirely novel material structures. To overcome this limitation, generative models have emerged as a promising tool for inverse material design, offering new avenues to explore unknown structural and property spaces. Although existing generative models have achieved initial progress in crystal structure generation, achieving property-guided material generation remains a significant challenge. This review first introduces representative generative models recently applied to materials generation, including CDVAE, MatGAN, and MatterGen, and analyzes their fundamental capabilities and limitations in structural generation. We then focus on strategies for incorporating target properties into generative models to achieve property-directed structure generation. Specifically, we discuss four representative approaches: Con-CDVAE based on target property vectors, SCIGEN with integrated structural constraints and guidance mechanisms, a fine-tuned version of MatterGen leveraging adapter-based property control, and a CDVAE latent space optimization strategy guided by property objectives. Finally, we summarize the key challenges faced by property-guided generative models and provide an outlook on future research directions. This review aims to offer researchers a systematic reference and inspiration for advancing property-driven generative approaches in material design. This work aims to provide researchers with a systematic reference and insight into the advancement of property-driven generative methods for materials design.
-
Keywords:
- machine learning /
- generative models /
- inverse design /
- property-guided
-
[1] Jiang X, Xue D, Bai Y, Wang W Y, Liu J, Yang M, Su Y 2025 Rev. Mater. Res. 1 100010
[2] Wu M, Zhang S, Ren J 2025 APL Mater. 13 020601
[3] Merchant A, Batzner S, Schoenholz S S, Aykol M, Cheon G, Cubuk E D 2023 Nature 624 80
[4] Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547
[5] Zhong M, Tran K, Min Y, Wang C, Wang Z, Dinh C T, De Luna P, Yu Z, Rasouli A S, Brodersen P, Sun S, Voznyy O, Tan C S, Askerka M, Che F, Liu M, Seifitokaldani A, Pang Y, Lo S C, Ip A, Ulissi Z, Sargent E H 2020 Nature 581 178
[6] Rao Z, Tung P Y, Xie R, Wei Y, Zhang H, Ferrari A, Klaver T P C, Körmann F, Sukumar P T, Kwiatkowski da Silva A, Chen Y, Li Z, Ponge D, Neugebauer J, Gutfleisch O, Bauer S, Raabe D 2022 Science 378 78
[7] Hellenbrandt M 2004 Crystallogr. Rev. 10 17
[8] Kirklin S, Saal J E, Meredig B, Thompson A, Doak J W, Aykol M, Rühl S, Wolverton C 2015 npj Comput. Mater. 1 1
[9] Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, Persson K A 2013 APL Mater. 1 011002
[10] Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Jørgen Mortensen J, Olsen T, Thygesen K S 2018 2D Mater. 5 042002
[11] Lu S, Zhou Q, Chen X, Song Z, Wang J 2022 Natl. Sci. Rev. 9 nwac111
[12] Kingma D P, Welling M 2019 Found. Trends Mach. Learn. 12 307
[13] Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y 2014 arXiv:1406.2661v1[stat.ML]
[14] Ho J, Jain A, Abbeel P 2020 arXiv:2006.11239v2[cs.LG]
[15] Stimper V, Liu D, Campbell A, Berenz V, Ryll L, Schölkopf B, Hernández-Lobato J M 2023 J. Open Source Softw. 8 5361
[16] Hoogeboom E, Gritsenko A A, Bastings J, Poole B, Berg R van den, Salimans T 2022 arXiv:2110.02037v2[cs.LG]
[17] Hong T, Chen T, Jin D, Zhu Y, Gao H, Zhao K, Zhang T, Ren W, Cao G 2025 npj Quantum Mater. 10 1
[18] Jin L, Du Z, Shu L, Cen Y, Xu Y, Mei Y, Zhang H 2025 Nat. Commun. 16 1210
[19] Sanchez-Lengeling B, Aspuru-Guzik A 2018 Science 361 360
[20] Zhang K, Chen T, Abbas Y, Jan S U, Zhou Z, Chu S, Xie G, Ullah S, Akram M Z, Zhang J, Xuan Y, Gong J R 2021 Matter 4 1054
[21] Manzoor A, Zhang Y, Aidhy D S 2021 Comput. Mater. Sci 198 110669
[22] Ye C Y, Weng H M, Wu Q S 2024 Comput. Mater. Today 1 100003
[23] Okabe R, Cheng M, Chotrattanapituk A, Hung N T, Fu X, Han B, Wang Y, Xie W, Cava R J, Jaakkola T S, Cheng Y, Li M 2024 arXiv:2407.04557v1[cond-mat.mtrl-sci]
[24] Ye C, Wang Y, Xie X, Zhu T, Liu J, He Y, Zhang L, Zhang J, Fang Z, Wang L, Liu Z, Weng H, Wu Q 2025 arXiv:2505.00076v1[cond-mat.mtrl-sci]
[25] Zeni C, Pinsler R, Zügner D, Fowler A, Horton M, Fu X, Wang Z, Shysheya A, Crabbé J, Ueda S, Sordillo R, Sun L, Smith J, Nguyen B, Schulz H, Lewis S, Huang C W, Lu Z, Zhou Y, Yang H, Hao H, Li J, Yang C, Li W, Tomioka R, Xie T 2025 Nature 639 624
[26] Song Z, Fan L, Lu S, Ling C, Zhou Q, Wang J 2025 Nat. Commun. 16 1053
[27] Chen X, Lu S, Chen Q, Zhou Q, Wang J 2024 Nat. Commun. 15 5391
[28] Choudhary K 2024 arXiv:2405.03680v2[cond-mat.mtrl-sci]
[29] Lu S, Zhou Q, Guo Y, Wang J 2022 Chem 8 769
[30] Xie T, Fu X, Ganea O E, Barzilay R, Jaakkola T 2021 arXiv:2110.06197v3[cs.LG]
[31] Dan Y, Zhao Y, Li X, Li S, Hu M, Hu J 2020 npj Comput. Mater. 6 1
[32] Kingma D P, Welling M 2022 arXiv:1312.6114v11[stat.ML]
[33] Song Y, Ermon S 2019 Proceedings of the 32nd Annual Conference on Neural Information Processing Systems Vancouver, Canada, December 8-14, 2019 p11895
[34] Lemons D S, Gythiel A 1997 Am. J. Phys. 65 1079
[35] Chen S, Ge C, Zhang S, Sun P, Luo P 2025 arXiv:2504.07963v1[cs.CV]
[36] Shi C, Xu M, Zhu Z, Zhang W, Zhang M, Tang J 2020 arXiv:2001.09382v2[cs.LG]
[37] Xu M, Yu L, Song Y, Shi C, Ermon S, Tang J 2022 arXiv:2203.02923v1[cs.LG]
[38] Castelli I E, Landis D D, Thygesen K S, Dahl S, Chorkendorff I, Jaramillo T F, Jacobsen K W 2012 Energy Environ. Sci. 5 9034
[39] Pickard C J https://archive.materialscloud.org/record/2020.0026/v1[2024-04-20]
[40] Ren Z, Tian S I P, Noh J, Oviedo F, Xing G, Li J, Liang Q, Zhu R, Aberle A G, Sun S, Wang X, Liu Y, Li Q, Jayavelu S, Hippalgaonkar K, Jung Y, Buonassisi T 2022 Matter 5 314
[41] Court C J, Yildirim B, Jain A, Cole J M 2020 J. Chem. Inf. Model. 60 4518
[42] Gebauer N W A, Gastegger M, Schütt K T 2020 arXiv:1906.00957v3[stat.ML]
[43] Davies D W, Butler K T, Jackson A J, Skelton J M, Morita K, Walsh A 2019 J. Open Source Softw. 4 1361
[44] Xu M, Luo S, Bengio Y, Peng J, Tang J 2021 arXiv:2102.10240v3[cs.LG]
[45] Ganea O E, Pattanaik L, Coley C W, Barzilay R, Jensen K F, Green W H, Jaakkola T S 2021 arXiv:2106.07802v1[physics.chem-ph]
[46] Zhang H, Georgescu A B, Yerramilli S, Karpovich C, Apley D W, Olivetti E A, Rondinelli J M, Chen W 2025 arXiv:2412.17283v2[cond-mat.mtrl-sci]
[47] Murphy L R, Meek T L, Allred A L, Allen L C 2000 J. Phys. Chem. A 104 5867
[48] Sessa F, Rahm M 2022 J. Phys. Chem. A 126 5472
[49] Arjovsky M, Chintala S, Bottou L 2017 arXiv:1701.07875v3[stat.ML]
[50] Maaten L van der, Hinton G 2008 J. Mach. Learn. Res. 9 2579
[51] Green M L, Choi C L, Hattrick-Simpers J R, Joshi A M, Takeuchi I, Barron S C, Campo E, Chiang T, Empedocles S, Gregoire J M, Kusne A G, Martin J, Mehta A, Persson K, Trautt Z, Van Duren J, Zakutayev A 2017 Appl. Phys. Rev. 4 011105
[52] Pickard C J, Needs R J 2011 J. Phys. Condens. Matter 23 053201
[53] Song Y, Sohl-Dickstein J, Kingma D P, Kumar A, Ermon S, Poole B 2021 arXiv:2011.13456v2[cs.LG]
[54] Schmidt J, Wang H C, Cerqueira T F T, Botti S, Marques M A L 2022 Sci. Data 9 64
[55] Jiao R, Huang W, Lin P, Han J, Chen P, Lu Y, Liu Y 2023 arXiv:2309.04475v2[cond-mat.mtrl-sci]
[56] Sultanov A, Crivello J C, Rebafka T, Sokolovska N 2023 J. Chem. Inf. Model. 63 6986
[57] Xie T, Grossman J C 2018 Phys. Rev. Lett. 120 145301
[58] Ward L, Agrawal A, Choudhary A, Wolverton C 2016 npj Comput. Mater. 2 1
[59] Han X Q, Wang X D, Xu M Y, Feng Z, Yao B W, Guo P J, Gao Z F, Lu Z Y 2025 Chin. Phys. Lett. 42 027403
[60] Long T, Zhang Y, Zhang H 2024 arXiv:2409.19124v1[cond-mat.mtrl-sci]
[61] Chen L, Zhang W, Nie Z, Li S, Pan F 2021 J. Mater. Inform. 1 N/A
[62] Chen Y, Wang X, Deng X, Liu Y, Chen X, Zhang Y, Wang L, Xiao H 2024 arXiv:2408.07608v1[cond-mat.mtrl-sci]
[63] New A, Pekala M, Pogue E A, Le N Q, Domenico J, Piatko C D, Stiles C D 2023 arXiv:2309.12323v1[cond-mat.mtrl-sci]
[64] Banik S, Dhabal D, Chan H, Manna S, Cherukara M, Molinero V, Sankaranarayanan S K R S 2023 npj Comput. Mater. 9 1
[65] Cao Z, Luo X, Lv J, Wang L 2024 arXiv:2403.15734v2[cond-mat.mtrl-sci]
[66] Yang S, Cho K, Merchant A, Abbeel P, Schuurmans D, Mordatch I, Cubuk E D 2024 arXiv:2311.09235v2[cs.LG]
[67] Jiao R, Huang W, Liu Y, Zhao D, Liu Y 2024 arXiv:2402.03992v2[cs.LG]
[68] Tsai W F, Fang C, Yao H, Hu J 2015 New J. Phys. 17 055016
[69] Ho J, Salimans T 2022 arXiv:2207.12598v1[cs.LG]
[70] Zhang L, Rao A, Agrawala M 2023 arXiv:2302.05543v3[cs.CV]
[71] Shuaibi M, Kolluru A, Das A, Grover A, Sriram A, Ulissi Z, Zitnick C L 2021 arXiv:2106.09575v1[cs.LG]
[72] Guo Z, Zhang C, Yu W, Herr J, Wiest O, Jiang M, Chawla N V 2021 arXiv:2102.07916v1[cs.LG]
[73] Ryan K, Lengyel J, Shatruk M 2018 J. Am. Chem. Soc. 140 10158
[74] Chenebuah E T, Nganbe M, Tchagang A B 2024 npj Comput. Mater. 10 198
[75] Fung V, Zhang J, Juarez E, Sumpter B G 2021 npj Comput. Mater. 7 1
[76] Varol Altay E, Alatas B 2020 Artif. Intell. Rev. 53 1373
[77] Butler K T, Choudhary K, Csanyi G, Ganose A M, Kalinin S V, Morgan D 2024 npj Comput. Mater. 10 1
[78] Wu Y, Li X, Guo R, Xu R, Ju M G, Wang J 2025 Natl. Sci. Rev 12 nwaf081
[79] Song Z, Lu S, Ju M, Zhou Q, Wang J 2025 Nat. Commun. 16 6530
[80] Seko A, Hayashi H, Tanaka I 2018 J. Chem. Phys. 148 241719
计量
- 文章访问数: 20
- PDF下载量: 2
- 被引次数: 0