搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习从单颗粒动力学中诊断尘埃等离子体全局性质信息

梁晨 卢少瑜 黄栋 陈鑫 冯岩

引用本文:
Citation:

基于机器学习从单颗粒动力学中诊断尘埃等离子体全局性质信息

梁晨, 卢少瑜, 黄栋, 陈鑫, 冯岩
cstr: 32037.14.aps.74.20251129

Diagnosing global properties of dusty plasma based on machine learning from single particle dynamics

LIANG Chen, LU Shaoyu, HUANG Dong, CHEN Xin, FENG Yan
cstr: 32037.14.aps.74.20251129
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 利用机器学习技术开发了一种全新的实验诊断方法, 纯粹基于单颗粒的位置涨落信息, 实现了对二维尘埃等离子体屏蔽参数κ和耦合参数Γ等全局性质信息的准确诊断, 并通过模拟和实验数据有效验证. 为了训练、验证和测试神经网络模型, 针对二维尘埃等离子体系统, 本文实施了不同κΓ数值下数百组独立的朗之万动力学模拟, 以获取大量的单颗粒动力学数据. 为了验证该诊断方法的可行性, 设计了三种不同的卷积神经网络模型, 用于实现对该系统屏蔽参数κ的诊断. 分析结果显示, 这三种模型对κ诊断结果和设定值几乎一致, 均方根误差分别为0.081, 0.279和0.155, 表现达到预期. 而对实验数据, 诊断出的κ数值分布呈单峰分布, 且峰值位置与传统方法诊断出的κ数值高度一致. 在此基础上, 对该诊断方法进行了进一步的优化改进, 使其能同时确定二维尘埃等离子体系统的屏蔽参数κ和耦合参数Γ, 并通过模拟和实验数据确认其准确性. 本文设计的卷积神经网络, 其优异表现清楚地表明, 通过机器学习, 能够仅根据单颗粒动力学信息准确诊断尘埃等离子体系统的全局性质信息.
    Currently, it is a great challenge to accurately diagnose global properties of dusty plasmas from limited data. Based on machine learning, a novel diagnostic method for various global properties in dusty plasma experiments is developed from single particle dynamics. It is found that for both two-dimensional (2D) dusty plasma simulations and experiments, the global properties such as the screening parameters κ and the coupling parameter Γ can be accurately determined purely from the position fluctuations of individual particles. Hundreds of independent Langevin dynamical simulations are performed with various specified κ and Γ values, resulting in a great number of individual particle position fluctuation data, which can be used for training, validating, and testing various convolutional neural network (CNN) models. To confirm the feasibility of this diagnostic method, three different CNN models are designed to determin the κ value. For the simulation data, all these CNN models perform excellently in determining the κ value, with the averaged determined κ value almost equal to the specified κ value. For the experiment data, the distribution of the determined κ values always exhibits one prominent peak, which is very consistent with the κ value obtained from the widely accepted phonon spectra fitting method. Furthermore, this diagnostic method is extended to simulatneously determining both the κ and Γ values, achieving satisfactory results by using 2D dusty plasma data from both simulations and experiments. The excellent performance of the CNN models developed here clearly indicates that through machine learning, the global properties of 2D dusty plasmas can be fully characterized purely from single particle dynamics.
      通信作者: 冯岩, fengyan@suda.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12175159)和江苏省高等学校重点学科建设项目资助的课题.
      Corresponding author: FENG Yan, fengyan@suda.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12175159) and the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions, China.
    [1]

    Pathria R K, Beale P D 2021 Statistical Mechanics (London: Academic) pp1–22

    [2]

    Feng Y, Goree J, Liu B 2007 Rev. Sci. Instrum. 78 053704Google Scholar

    [3]

    Feng Y, Goree J, Liu B 2011 Rev. Sci. Instrum. 82 053707Google Scholar

    [4]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 075001Google Scholar

    [5]

    Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, van de Kerkhof M 2023 Phys. Plasmas 30 120601Google Scholar

    [6]

    Goree J 1994 Plasma Sources Sci. Technol. 3 400Google Scholar

    [7]

    Feng Y, Goree J, Liu B 2008 Phys. Rev. Lett. 100 205007Google Scholar

    [8]

    Feng Y, Goree J, Liu B 2010 Phys. Rev. Lett. 105 025002Google Scholar

    [9]

    Lu S, Huang D, Feng Y 2021 Phys. Rev. E 103 063214Google Scholar

    [10]

    Huang D, Lu S, Shi X Q, Goree J, Feng Y 2021 Phys. Rev. E 104 035207

    [11]

    Konopka U, Morfill G, Ratke L 2000 Phys. Rev. Lett. 84 891Google Scholar

    [12]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [13]

    Khrapak S, Couëdel L 2020 Phys. Rev. E 102 033207Google Scholar

    [14]

    Bajaj P, Khrapak S, Yaroshenko V, Schwabe M 2022 Phys. Rev. E 105 025202Google Scholar

    [15]

    Nunomura S, Goree J, Hu S, Wang X, Bhattacharjee A, Avinash K 2002 Phys. Rev. Lett. 89 035001Google Scholar

    [16]

    Nunomura S, Zhdanov S, Morfill G E, Goree J 2003 Phys. Rev. E 68 026407Google Scholar

    [17]

    Nosenko V, Goree J 2004 Phys. Rev. Lett. 93 155004Google Scholar

    [18]

    Melzer A, Homann A, Piel A 1996 Phys. Rev. E 53 2757Google Scholar

    [19]

    张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰 2025 物理学报 74 075202Google Scholar

    Zhang S X, Wang S, Liu X , Wang X Z, Liu F C, He Y F 2025 Acta Phys. Sin. 74 075202Google Scholar

    [20]

    田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰 2024 物理学报 73 115201Google Scholar

    Tian M, Yao T Y, Cai Z M, Liu F C, He Y F 2024 Acta Phys. Sin. 73 115201Google Scholar

    [21]

    黄渝峰, 贾文柱, 张莹莹, 宋远红 2024 物理学报 73 085202Google Scholar

    Huang Y F, Jia W Z, Zhang Y Y, Song Y H 2024 Acta Phys. Sin. 73 085202Google Scholar

    [22]

    Kalman G J, Hartmann P, Donkó Z, Rosenberg M 2004 Phys. Rev. Lett. 92 065001Google Scholar

    [23]

    Nosenko V, Goree J, Ma Z W, Piel A 2002 Phys. Rev. Lett. 88 135001Google Scholar

    [24]

    Brunton S L, Noack B R, Koumoutsakos P 2020 Annu. Rev. Fluid Mech. 52 477Google Scholar

    [25]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547Google Scholar

    [26]

    Degrave J, Felici F, Buchli J, et al. 2022 Nature 602 414Google Scholar

    [27]

    Huang H, Nosenko V, Huang-Fu H X, Thomas H M, Du C R 2022 Phys. Plasmas 29 073702Google Scholar

    [28]

    Huang H, Schwabe M, Du C R 2019 J. Imaging 5 36Google Scholar

    [29]

    Wang Z, Xu J, Kovach Y E, Wolfe B T, Thomas E, Guo H, Foster J E, Shen H W 2020 Phys. Plasmas 27 033703Google Scholar

    [30]

    Dormagen N, Klein M, Schmitz A S, Thoma M H, Schwarz M 2024 J. Imaging 10 40Google Scholar

    [31]

    Ding Z, Yao J, Wang Y, Yuan C, Zhou Z, Kudryavtsev A A, Gao R, Jia J 2021 Plasma Sci. Technol. 23 095403Google Scholar

    [32]

    Yu W, Cho J, Burton J C 2022 Phys. Rev. E 106 035303

    [33]

    Liang C, Huang D, Lu S, Feng Y 2023 Phys. Rev. Res. 5 033086Google Scholar

    [34]

    Liang C, Huang D, Lu S, Feng Y 2024 Phys. Plasmas 31 113702Google Scholar

    [35]

    Liu B, Avinash K, Goree J 2003 Phys. Rev. Lett. 91 255003Google Scholar

    [36]

    Feng Y, Liu B, Goree J 2008 Phys. Rev. E 78 026415Google Scholar

    [37]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [38]

    Kingma D P, Ba J 2014 arXiv: 1412.6980 [cs.LG]

  • 图 1  单颗粒位置涨落的(a)时序图和(b)空间分布图

    Fig. 1.  (a) Time series and (b) the space distribution of individual particle position fluctuations.

    图 2  卷积神经网络结构图

    Fig. 2.  Structure of our convolutional neural networks.

    图 3  神经网络模型(a) CNN1, (b) CNN2 和(c) CNN3对模拟数据的分析结果

    Fig. 3.  Analyzed results of the simulation data from (a) CNN1, (b) CNN2, and (c) CNN3.

    图 4  神经网络模型(a) CNN2和(b) CNN3对实验数据的分析结果

    Fig. 4.  Analyzed results of the experiment data: (a) CNN2; (b) CNN3.

    图 5  经改进后的卷积神经网络结构Model A′的结构图

    Fig. 5.  Structure of our convolutional neural network Model A′.

    图 6  神经网络模型CNN3' 对模拟数据$ \kappa_{\rm{NN}} $ (a)和$ \varGamma_{\rm{NN}} $ (b)的诊断结果图

    Fig. 6.  Determined $ \kappa_{\rm{NN}} $ (a) and $ \varGamma_{\rm{NN}} $ (b) results of the simulaiton data from CNN3'.

    图 7  神经网络模型CNN3' 对实验数据(a) $ \kappa_{\rm{NN}} $和(b) $ \varGamma_{\rm{NN}} $的诊断结果

    Fig. 7.  Determined (a) $ \kappa_{\rm{NN}} $ and (b) $ \varGamma_{\rm{NN}} $ results of the experiment data from CNN3'.

  • [1]

    Pathria R K, Beale P D 2021 Statistical Mechanics (London: Academic) pp1–22

    [2]

    Feng Y, Goree J, Liu B 2007 Rev. Sci. Instrum. 78 053704Google Scholar

    [3]

    Feng Y, Goree J, Liu B 2011 Rev. Sci. Instrum. 82 053707Google Scholar

    [4]

    He Y F, Ai B Q, Dai C X, Song C, Wang R Q, Sun W T, Liu F C, Feng Y 2020 Phys. Rev. Lett. 124 075001Google Scholar

    [5]

    Beckers J, Berndt J, Block D, Bonitz M, Bruggeman P J, Couëdel L, Delzanno G L, Feng Y, Gopalakrishnan R, Greiner F, Hartmann P, Horányi M, Kersten H, Knapek C A, Konopka U, Kortshagen U, Kostadinova E G, Kovačević E, Krasheninnikov S I, Mann I, Mariotti D, Matthews L S, Melzer A, Mikikian M, Nosenko V, Pustylnik M Y, Ratynskaia S, Sankaran R M, Schneider V, Thimsen E J, Thomas E, Thomas H M, Tolias P, van de Kerkhof M 2023 Phys. Plasmas 30 120601Google Scholar

    [6]

    Goree J 1994 Plasma Sources Sci. Technol. 3 400Google Scholar

    [7]

    Feng Y, Goree J, Liu B 2008 Phys. Rev. Lett. 100 205007Google Scholar

    [8]

    Feng Y, Goree J, Liu B 2010 Phys. Rev. Lett. 105 025002Google Scholar

    [9]

    Lu S, Huang D, Feng Y 2021 Phys. Rev. E 103 063214Google Scholar

    [10]

    Huang D, Lu S, Shi X Q, Goree J, Feng Y 2021 Phys. Rev. E 104 035207

    [11]

    Konopka U, Morfill G, Ratke L 2000 Phys. Rev. Lett. 84 891Google Scholar

    [12]

    Ichimaru S 1982 Rev. Mod. Phys. 54 1017Google Scholar

    [13]

    Khrapak S, Couëdel L 2020 Phys. Rev. E 102 033207Google Scholar

    [14]

    Bajaj P, Khrapak S, Yaroshenko V, Schwabe M 2022 Phys. Rev. E 105 025202Google Scholar

    [15]

    Nunomura S, Goree J, Hu S, Wang X, Bhattacharjee A, Avinash K 2002 Phys. Rev. Lett. 89 035001Google Scholar

    [16]

    Nunomura S, Zhdanov S, Morfill G E, Goree J 2003 Phys. Rev. E 68 026407Google Scholar

    [17]

    Nosenko V, Goree J 2004 Phys. Rev. Lett. 93 155004Google Scholar

    [18]

    Melzer A, Homann A, Piel A 1996 Phys. Rev. E 53 2757Google Scholar

    [19]

    张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰 2025 物理学报 74 075202Google Scholar

    Zhang S X, Wang S, Liu X , Wang X Z, Liu F C, He Y F 2025 Acta Phys. Sin. 74 075202Google Scholar

    [20]

    田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰 2024 物理学报 73 115201Google Scholar

    Tian M, Yao T Y, Cai Z M, Liu F C, He Y F 2024 Acta Phys. Sin. 73 115201Google Scholar

    [21]

    黄渝峰, 贾文柱, 张莹莹, 宋远红 2024 物理学报 73 085202Google Scholar

    Huang Y F, Jia W Z, Zhang Y Y, Song Y H 2024 Acta Phys. Sin. 73 085202Google Scholar

    [22]

    Kalman G J, Hartmann P, Donkó Z, Rosenberg M 2004 Phys. Rev. Lett. 92 065001Google Scholar

    [23]

    Nosenko V, Goree J, Ma Z W, Piel A 2002 Phys. Rev. Lett. 88 135001Google Scholar

    [24]

    Brunton S L, Noack B R, Koumoutsakos P 2020 Annu. Rev. Fluid Mech. 52 477Google Scholar

    [25]

    Butler K T, Davies D W, Cartwright H, Isayev O, Walsh A 2018 Nature 559 547Google Scholar

    [26]

    Degrave J, Felici F, Buchli J, et al. 2022 Nature 602 414Google Scholar

    [27]

    Huang H, Nosenko V, Huang-Fu H X, Thomas H M, Du C R 2022 Phys. Plasmas 29 073702Google Scholar

    [28]

    Huang H, Schwabe M, Du C R 2019 J. Imaging 5 36Google Scholar

    [29]

    Wang Z, Xu J, Kovach Y E, Wolfe B T, Thomas E, Guo H, Foster J E, Shen H W 2020 Phys. Plasmas 27 033703Google Scholar

    [30]

    Dormagen N, Klein M, Schmitz A S, Thoma M H, Schwarz M 2024 J. Imaging 10 40Google Scholar

    [31]

    Ding Z, Yao J, Wang Y, Yuan C, Zhou Z, Kudryavtsev A A, Gao R, Jia J 2021 Plasma Sci. Technol. 23 095403Google Scholar

    [32]

    Yu W, Cho J, Burton J C 2022 Phys. Rev. E 106 035303

    [33]

    Liang C, Huang D, Lu S, Feng Y 2023 Phys. Rev. Res. 5 033086Google Scholar

    [34]

    Liang C, Huang D, Lu S, Feng Y 2024 Phys. Plasmas 31 113702Google Scholar

    [35]

    Liu B, Avinash K, Goree J 2003 Phys. Rev. Lett. 91 255003Google Scholar

    [36]

    Feng Y, Liu B, Goree J 2008 Phys. Rev. E 78 026415Google Scholar

    [37]

    LeCun Y, Bengio Y, Hinton G 2015 Nature 521 436Google Scholar

    [38]

    Kingma D P, Ba J 2014 arXiv: 1412.6980 [cs.LG]

  • [1] 张顺欣, 王硕, 刘雪, 王新占, 刘富成, 贺亚峰. 尘埃等离子体金属直棘轮中尘埃颗粒的整流. 物理学报, 2025, 74(7): 075202. doi: 10.7498/aps.74.20241740
    [2] 姜廷帅, 阮逸润, 李海, 白亮, 袁逸飞, 于天元. 基于信息熵赋权的多通道卷积神经网络节点重要性评估方法. 物理学报, 2025, 74(12): 126401. doi: 10.7498/aps.74.20250329
    [3] 赵悦悦, 缪阳, 杨唯, 杜诚然. 尘埃颗粒对低气压射频等离子体中非局域动理学的影响. 物理学报, 2025, 74(20): 205204. doi: 10.7498/aps.74.20251096
    [4] 刘宇杰, 王振宇, 雷航, 张国宇, 咸家伟, 高志斌, 孙军, 宋海峰, 丁向东. 卷积神经网络辅助无机晶体弹性性质预测. 物理学报, 2025, 74(12): 120702. doi: 10.7498/aps.74.20250127
    [5] 朱顺凯, 袁方, 胡凯, 皮涛涛, 朱熙铖, 李程. 基于卷积神经网络的双站雷达散射截面减缩超表面设计. 物理学报, 2025, 74(10): 107802. doi: 10.7498/aps.74.20250109
    [6] 吴银花, 种喆, 朱鹏飞, 陈莎莎, 周顺. 基于卷积神经网络的非对称共光路相干色散光谱仪背景白光干扰去除. 物理学报, 2025, 74(10): 104201. doi: 10.7498/aps.74.20250090
    [7] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, 2024, 73(8): 086301. doi: 10.7498/aps.73.20240156
    [8] 战庆亮, 白春锦, 葛耀君. 基于时程深度学习的复杂流场流动特性表征方法. 物理学报, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [9] 赵伟瑞, 王浩, 张璐, 赵跃进, 褚春艳. 基于卷积神经网络的高精度分块镜共相检测方法. 物理学报, 2022, 71(16): 164202. doi: 10.7498/aps.71.20220434
    [10] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [11] 杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立. 强碰撞磁化尘埃等离子体中的漂移波. 物理学报, 2020, 69(17): 175201. doi: 10.7498/aps.69.20200468
    [12] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测. 物理学报, 2020, 69(10): 100701. doi: 10.7498/aps.69.20191935
    [13] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解. 物理学报, 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [14] 徐彬, 李辉, 王占阁, 许正文, 吴健. 高密度尘埃等离子体的非相干散射理论研究. 物理学报, 2017, 66(4): 049401. doi: 10.7498/aps.66.049401
    [15] 王学扬, 齐志华, 宋颖, 刘东平. 等离子体放电活化生理盐水杀菌应用研究. 物理学报, 2016, 65(12): 123301. doi: 10.7498/aps.65.123301
    [16] 张晓丹, 张发荣, Amanatides Elefterious, Mataras Dimitris, 赵 颖. 硅薄膜沉积中等离子体辉光功率和阻抗的测试分析. 物理学报, 2007, 56(9): 5309-5313. doi: 10.7498/aps.56.5309
    [17] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [18] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [19] 张治国, 刘天伟, 徐 军, 邓新禄, 董 闯. MW-ECR PE-UMS等离子体特性及对Zr-N薄膜结构性能的影响. 物理学报, 2005, 54(7): 3257-3262. doi: 10.7498/aps.54.3257
    [20] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播. 物理学报, 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
计量
  • 文章访问数:  475
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-22
  • 修回日期:  2025-09-09
  • 上网日期:  2025-09-11
  • 刊出日期:  2025-10-20

/

返回文章
返回