-
原子级厚度的二维过渡金属硫化物(2D-TMDs)材料展现出丰富的物理性质,如量子自旋霍尔效应、超导电性、电荷密度波、铁电性和铁磁性等,而受到了广泛的关注。2D-TMDs材料通过不同的层间堆叠方式和元素配位几何,可以呈现出物理性质迥异的晶相结构。通过晶相工程改变2D-TMDs材料的晶相结构是实现其电子结构、量子态及功能特性调控的有效策略。本文聚焦于热力学亚稳相2D-TMDs的制备,详细总结了利用物理化学手段诱导晶相结构转变的调控机理和直接相选择合成特定晶相结构的技术进展,及其对材料电子结构、超导电性、磁性、铁电性等物性的影响。最后,对利用晶相工程进行2D-TMDs结构和物性调控的研究现状和未来发展进行了总结和展望。Two-dimensional transition metal dichalcogenides (2D-TMDs) with atomic thickness have attracted extensive attention due to their various physical properties, such as quantum spin Hall effect, superconductivity, charge density waves, ferroelectricity, and ferromagnetism. Owing to different interlayer stacking configurations and elemental coordination geometries, 2D-TMDs exhibit diverse crystalline phase structures with distinct physicochemical properties. Changing the crystalline phase structures of TMDs through phase engineering can be an effective strategy for modulating the electronic structures, quantum states and functional characteristics. This review focuses on the manufacture of thermodynamically metastable-phase 2D-TMDs, providing a detailed discussion on the mechanisms of phase transition induced by physicochemical approaches and the latest advances in direct phase-selective synthesis of specific crystalline phase structures. The impacts of phase engineering on electronic structures, superconductivity, magnetism, ferroelectricity, and other physical properties are systematically elucidated. The research advances in structure and property modulation of 2D-TMDs via phase engineering are summarized. At present, a variety of approaches including alkali metal intercalation, doping, defects, strain, electric field and external stimuli (plasma, electron beam and laser irradiation) have been developed for controlled phase transition in 2D-TMDs. These physical and chemical approaches can induce local transitions of phase structure, which have the advantage of studying the process and mechanism of phase transition. However, there still exists some problems such as the introduction of impurities and defects, insufficient phase stability and difficulty in large-scale fabrication. In contrast, the phase-selective synthesis of 2D-TMDs through methods such as temperature control, precursor design, interface engineering, seed crystal induction and templated heteroepitaxial growth is more conducive to the characterization of intrinsic physical properties, large-scale fabrication and electronic device applications. Despite the significant progress made in phase-selective synthesis, there are still several important challenges and development opportunities in this field. Universal strategies and mechanisms for phase-selective synthesis still require further expansion and exploration. In the future, it is expected that through theoretical simulations, machine learning-driven predictions and the integration of advanced in-situ characterization techniques, a universal and efficient phase engineering strategy will be developed, which can be extended to more 2D-TMDs material systems.
-
Keywords:
- Two-dimensional transition metal dichalcogenides /
- Phase engineering /
- Phase-selective synthesis /
- Physical property modulation
-
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306666
[2] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6147
[3] Cai Q, Scullion D, Gan W, Falin A, Zhang S, Watanabe K, Taniguchi T, Chen Y, Santos E J G, Li L H 2019 Sci. Adv. 50129
[4] Qin B, Ma C, Guo Q, Li X, Wei W, Ma C, Wang Q, Liu F, Zhao M, Xue G, Qi J, Wu M, Hong H, Du L, Zhao Q, Gao P, Wang X, Wang E, Zhang G, Liu C, Liu K 2024 Science 38599
[5] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546270
[6] Li Z, Zhang H, Li G, Guo J, Wang Q, Deng Y, Hu Y, Hu X, Liu C, Qin M, Shen X, Yu R, Gao X, Liao Z, Liu J, Hou Z, Zhu Y, Fu X 2024 Nat. Commun. 151017
[7] Choi W, Choudhary N, Han G H, Park J, Akinwande D, Lee Y H 2017 Mater. Today 20116
[8] Che X, Deng Y, Fang Y, Pan J, Yu Y, Huang F 2019 Adv. Electron. Mater. 51900462
[9] Zhao S, Huang J, Crépel V, Xiong Z, Wu X, Zhang T, Wang H, Han X, Li Z, Xi C, Pan S, Wang Z, Kuang G, Luo J, Shen Q, Yang J, Zhou R, Watanabe K, Taniguchi T, SacépéB, Zhang J, Wang N, Lu J, Regnault N, Han Z V 2024 Nat. Electron. 71117
[10] Xia Y, Han Z, Watanabe K, Taniguchi T, Shan J, Mak K F 2025 Nature 637833
[11] Han W, Zhang T, Zhao P, Yang L, Cheng M, Yang L, Shi J, Chen Y 2024 Small 202400987
[12] Chang C, Zhang X, Li W, Guo Q, Feng Z, Huang C, Ren Y, Cai Y, Zhou X, Wang J, Tang Z, Ding F, Wei W, Liu K, Xu X 2024 Nat. Commun. 154130
[13] Thompson E, Chu K T, Mesple F, Zhang X W, Hu C, Zhao Y, Park H, Cai J, Anderson E, Watanabe K, Taniguchi T, Yang J, Chu J H, Xu X, Cao T, Xiao D, Yankowitz M 2025 Nat. Phys. 211224
[14] Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nat. Nanotechnol. 8497
[15] Septianto R D, Romagosa A P, Dong Y, Matsuoka H, Ideue T, Majima Y, Iwasa Y 2024 Nano Lett. 2413790
[16] Shang C, Lei B, Zhuo W Z, Zhang Q, Zhu C S, Cui J H, Luo X G, Wang N Z, Meng F B, Ma L K, Zeng C G, Wu T, Sun Z, Huang F Q, Chen X H 2019 Phys. Rev. B 100020508
[17] Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C, Xie Y 2019 Adv. Mater. 311900568
[18] Yan S, Qiao W, He X, Guo X, Xi L, Zhong W, Du Y 2015 Appl. Phys. Lett. 106012408
[19] Shirodkar S N, Waghmare U V 2014 Phys. Rev. Lett. 112157601
[20] Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy V B, Eda G, Chhowalla M 2013 Nano Lett. 136222
[21] Fan X L, Yang Y, Xiao P, Lau W M 2014 J. Mater. Chem. A 220545
[22] Geng X, Jiao Y, Han Y, Mukhopadhyay A, Yang L, Zhu H 2017 Adv. Funct. Mater. 271702998
[23] Zhang Y, Wang J, Shan L, Han B, Gao Q, Cai Z, Zhou C, Tian X, Sun R, Mai L 2024 Adv. Energy Mater. 142303464
[24] Hou X, Zhang W, Peng J, Zhou L, Wu J, Xie K, Fang Z 2022 ACS Appl. Energy Mater. 511292
[25] Keum D H, Cho S, Kim J H, Choe D H, Sung H J, Kan M, Kang H, Hwang J Y, Kim S W, Yang H, Chang K J, Lee Y H 2015 Nat. Phys. 11482
[26] Gan Y, Cho C W, Li A, Lyu J, Du X, Wen J S, Zhang L Y 2019 Chin. Phys. B 28117401
[27] Voiry D, Mohite A, Chhowalla M 2015 Chem. Soc. Rev. 442702
[28] Qi Y, Naumov P G, Ali M N, Rajamathi C R, Schnelle W, Barkalov O, Hanfland M, Wu S C, Shekhar C, Sun Y, Süß V, Schmidt M, Schwarz U, Pippel E, Werner P, Hillebrand R, Förster T, Kampert E, Parkin S, Cava R J, Felser C, Yan B, Medvedev S A 2016 Nat. Commun. 711038
[29] Jindal A, Saha A, Li Z, Taniguchi T, Watanabe K, Hone J C, Birol T, Fernandes R M, Dean C R, Pasupathy A N, Rhodes D A 2023 Nature 61348
[30] Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z, Liu G 2019 Nat. Commun. 102044
[31] Deng Y, Zhao X, Zhu C, Li P, Duan R, Liu G, Liu Z 2021 ACS Nano 1512465
[32] Xiao Y, Zhou M Y, Liu J L, Xu J, Fu L 2019 Sci. China Mater. 62759
[33] Qian Z, Jiao L, Xie L 2020 Chin. J. Chem. 38753
[34] Kim J H, Sung H, Lee G H 2024 Small Sci. 42300093
[35] Huang H H, Fan X, Singh D J, Zheng W T 2020 Nanoscale 121247
[36] Wang R, Yu Y, Zhou S, Li H, Wong H, Luo Z, Gan L, Zhai T 2018 Adv. Funct. Mater. 281802473
[37] Chen H, Zhang J, Kan D, He J, Song M, Pang J, Wei S, Chen K 2022 Cryst. 121381
[38] Wang X, Shen X, Wang Z, Yu R, Chen L 2014 ACS Nano 811394
[39] Ho C H, Chen W H, Tiong K K, Lee K Y, Gloter A, Zobelli A, Stephan O, Tizei L H G 2017 ACS Nano 1111162
[40] Yin X, Tang C S, Wu D, Kong W, Li C, Wang Q, Cao L, Yang M, Chang Y H, Qi D, Ouyang F, Pennycook S J, Feng Y Pi, Breese M B H, Wang S J, Zhang W, Rusydi A, Wee A T S 2019 Adv. Sci. 61802093
[41] Cho S, Kang S H, Yu H S, Kim H W, Ko W, Hwang S W, Han W H, Choe D H, Jung Y H, Chang K J 20172D Mater. 4021030
[42] Zheng X, Han W, Yang K, Wong L W, Tsang C S, Lai K H, Zheng F, Yang T, Lau S P, Ly T H, Yang M, Zhao J 2022 Sci. Adv. 80773
[43] Li Y, Duerloo K A N, Wauson K, Reed E J 2016 Nat. Commun. 710671
[44] Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, Zhang G 2017 J. Am. Chem. Soc. 13910216
[45] Katagiri Y, Nakamura T, Ishii A, Ohata C, Hasegawa M, Katsumoto S, Cusati T, Fortunelli A, Iannaccone G, Fiori G, Roche S, Haruyama J 2016 Nano Lett. 163788
[46] Shautsova V, Sinha S, Hou L, Zhang Q, Tweedie M, Lu Y, Sheng Y, Porter B F, Bhaskaran H, Warner J H 2019 ACS Nano 1314162
[47] Empante T A, Zhou Y, Klee V, Nguyen A E, Lu I H, Valentin M D, Naghibi Alvillar S A, Preciado E, Berges A J, Merida C S, Gomez M, Bobek S, Isarraraz M, Reed E J, Bartels L 2017 ACS Nano 11900
[48] Zhou L, Xu K, Zubair A, Liao A D, Fang W, Ouyang F, Lee Y H, Ueno K, Saito R, Palacios T, Kong J, Dresselhaus M S 2015 J. Am. Chem. Soc. 13711892
[49] Li Z, Zhai L, Zhang Q, Zhai W, Li P, Chen B, Chen C, Yao Y, Ge Y, Yang H, Qiao P, Kang J, Shi Z, Zhang A, Wang H, Liang J, Liu J, Guan Z, Liao L, Neacșu V A, Ma C, Chen Y, Zhu Y, Lee C S, Ma L, Du Y, Gu L, Li J F, Tian Z Q, Ding F, Zhang H 2024 Nat. Mater. 231355
[50] Xu X, Pan Y, Liu S, Han B, Gu P, Li S, Xu W, Peng Y, Han Z, Chen J, Gao P, Ye Y 2021 Science 372195
[51] Zhang C, Liu W, Zhan F, Zhang T, Liu L, Zhang M, Xie S, Li Z, Sang H, Ge H, Yan Y, Wang R, Wang Y, Zhang Q, Tang X 2021 Adv. Funct. Mater. 312103384
[52] Kappera R, Voiry D, Yalcin S E, Branch B, Gupta G, Mohite A D, Chhowalla M 2014 Nat. Mater. 131128
[53] Sun L, Yan X, Zheng J, Yu H, Lu Z, Gao S P, Liu L, Pan X, Wang D, Wang Z, Wang P, Jiao L 2018 Nano Lett. 183435
[54] Xu X, Chen S, Liu S, Cheng X, Xu W, Li P, Wan Y, Yang S, Gong W, Yuan K, Gao P, Ye Y, Dai L 2019 J. Am. Chem. Soc. 1412128
[55] Song S, Keum D H, Cho S, Perello D, Kim Y, Lee Y H 2015 Nano Lett. 16188
[56] Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H 2015 Science 349625
[57] Chen S Y, Naylor C H, Goldstein T, Johnson A T C, Yan J 2017 ACS Nano 11814
[58] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J, Zhang X 2017 Nature 550487
[59] Lin Y C, Dumcenco D O, Huang Y S, Suenaga K 2014 Nat. Nanotechnol. 9391
[60] Yang S Z, Gong Y, Manchanda P, Zhang Y Y, Ye G, Chen S, Song L, Pantelides S T, Ajayan P M, Chisholm M F, Zhou W 2018 Adv. Mater. 301803477
[61] Cai Z, Liu B, Zou X, Cheng H M 2018 Chem. Rev. 1186091
[62] Chang C, Kou J Z, Xu X Z 2023 Acta Phys. Sin. 72208101(in Chinese) [常超, 寇金宗, 徐小志2023物理学报72208101]
[63] Cui G, Qi J, Liang Z, Zeng F, Zhang X, Xu X, Liu K 2024 Precis. Chem. 2330
[64] He Q, Li P, Wu Z, Yuan B, Luo Z, Yang W, Liu J, Cao G, Zhang W, Shen Y Zhang P, Liu S, Shao G, Yao Z 2019 Adv. Mater. 311901578
[65] Zheng P, Wei W, Liang Z, Qin B, Tian J, Wang J, Qiao R, Ren Y, Chen J, Huang C, Zhou X, Zhang G, Tang Z, Yu D, Ding F, Liu K, Xu X 2023 Nat. Commun. 14592
[66] Zhang J, Wang F, Shenoy V B, Tang M, Lou J 2020 Mater. Today 40132
[67] Sung J H, Heo H, Si S, Kim Y H, Noh H R, Song K, Kim J, Lee C S, Seo S Y, Kim D H, Kim H K, Yeom H W, Kim T H, Choi S Y, Kim J S, Jo M H 2017 Nat. Nanotechnol. 121064
[68] Cho D, Bastiaans K M, Chatzopoulos D, Gu G D, Allan M P 2019 Nature 571541
[69] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515245
[70] Zhou J, Zhu C, Zhou Y, Dong J, Li P, Zhang Z, Wang Z, Lin Y C, Shi J, Zhang R, Zheng Y, Yu H, Tang B, Liu F, Wang L, Liu L, Liu G B, Hu W, Gao Y, Yang H, Gao W, Lu L, Wang Y, Suenaga K, Liu G, Ding F, Yao Y, Liu Z 2023 Nat. Mater. 22450
[71] Kang L, Ye C, Zhao X, Zhou X, Hu J, Li Q, Liu D, Das C M, Yang J, Hu D, Chen J, Cao X, Zhang Y, Xu M, Di J, Tian D, Song P, Kutty G, Zeng Q, Fu Q, Deng Y, Zhou J, Ariando A, Miao F, Hong G, Huang Y, Pennycook S J, Yong K T, Ji W, Wang X R, Liu Z 2020 Nat. Commun. 113729
[72] Narangammana L K, Liu X, Nie Y F, Rueckert F J, Budnick J I, Hines W A, Gu G, Wells B O 2013 Appl. Phys. Lett. 103102604
[73] Maheshwari P K, Reddy V R, Gahtori B, Awana V P S 2018 Mater. Res. Express 5126002
[74] Hu D, Ye C, Wang X, Zhao X, Kang L, Liu J, Duan R, Cao X, He Y, Hu J, Li S, Zeng Q, Deng Y, Yin P F, Ariando A, Huang Y, Zhang H, Wang X R, Liu Z 2021 Nano Lett. 215338
[75] Lian C S, Si C, Duan W 2018 Nano Lett. 182924
[76] Liu L, Yang H, Huang Y, Song X, Zhang Q, Huang Z, Hou Y, Chen Y, Xu Z, Zhang T, Wu X, Sun J, Huang Y, Zheng F, Li X, Yao Y, Gao H J, Wang Y 2021 Nat. Commun. 121978
[77] Zhang Q, Hou Y, Zhang T, Xu Z, Huang Z, Yuan P, Jia L, Yang H, Huang Y, Ji W, Qiao J, Wu X, Wang Y 2021 ACS Nano 1516589
[78] Nakata Y, Sugawara K, Shimizu R, Okada Y, Han P, Hitosugi T, Ueno K, Sato T, Takahashi T 2016 NPG Asia Mater. 8321
[79] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda-Aristizabal C, Ryu H, Edmonds M T, Tsai H-Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2016 Nat. Phys. 1292
[80] Liu Z Y, Qiao S, Huang B, Tang Q Y, Ling Z H, Zhang W H, Xia H N, Liao X, Shi H, Mao W H, Zhu G L, LüJ T, Fu Y S 2021 Nano Lett. 217005
[81] Liu L, Wu J, Wu L, Ye M, Liu X, Wang Q, Hou S, Lu P, Sun L, Zheng J, Xing L, Gu L, Jiang X, Xie L, Jiao L 2018 Nat. Mater. 171108
[82] Calandra M 2013 Phys. Rev. B 88245428
[83] Enyashin A N, Seifert G 2012 Comput. Theor. Chem. 99913
[84] Mu W, Ke C, Huangfu C, Dong J, Zhou Y, Zheng J, Yue S, Li J, Liu S, Jiao L 2025 Adv. Mater. 372504941
[85] HuangFu C, Zhou Y, Ke C, Liao J, Wang J, Liu H, Liu D, Liu S, Xie L, Jiao L 2024 ACS Nano 1814708
[86] Lai Z, He Q, Tran T H, Repaka D V M, Zhou D D, Sun Y, Xi S, Li Y, Chaturvedi A, Tan C, Chen B, Nam G H, Li B, Ling C, Zhai W, Shi Z, Hu D, Sharma V, Hu Z, Chen Y, Zhang Z, Yu Y, Wang X R, Ramanujan R V, Ma Y, Hippalgaonkar K, Zhang H 2021 Nat. Mater. 201113
[87] Cheng F, Hu Z, Xu H, Shao Y, Su J, Chen Z, Ji W, Loh K P 2019 ACS Nano 132316
[88] Liu M, Gou J, Liu Z, Chen Z, Ye Y, Xu J, Xu X, Zhong D, Eda G, Wee A T S 2024 Nat. Commun. 151765
[89] Liu M, Huang Y L, Gou J, Liang Q, Chua R, Arramel, Duan S, Zhang L, Cai L, Yu X, Zhong D, Zhang W, Wee A T S 2021 J. Phys. Chem. Lett. 127752
计量
- 文章访问数: 20
- PDF下载量: 2
- 被引次数: 0