搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于物理信息神经网络求解低温等离子体反问题研究

李文凯 赵正 张远涛

引用本文:
Citation:

基于物理信息神经网络求解低温等离子体反问题研究

李文凯, 赵正, 张远涛

Solving inverse problems of low-temperature plasmas by physics-informed neural networks

LI Wenkai, ZHAO Zheng, ZHANG Yuantao
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 低温等离子体的反问题是指根据等离子体的密度、电场等物理特性来反演电压幅值、频率等放电参数, 反问题的求解是对等离子体进行智能控制的重要前提, 在流体描述的框架下, 基于传统的离散化方法来求解反问题往往是非常困难的. 本文引入物理信息神经网络(physics-informed neural networks, PINNs)对大气压射频等离子体的反问题的进行求解, 把连续性方程、泊松方程及漂移扩散近似等主要控制方程与作为待求解放电参数的电压幅值与频率, 及额外的电场数据这3部分作为约束嵌入PINNs的损失函数中. 经过训练后, PINNs可以实现对电压幅值与频率等放电参数的精确反演, 且可以保证误差均在1%以内, 同时也可以完整地输出密度、电场、通量等物理量的时空演化. 为进一步优化额外数据对PINNs计算的影响, 本文还深入分析了电场数据的采样位置、采样数量以及噪声水平对反演电压幅值与频率的效果. 本研究表明, PINNs能够在给定实验或计算数据条件下, 实现射频等离子体放电参数的精准反演及等离子体物理特性的精确计算, 从而为推进对等离子体的智能控制打下基础.
    The inverse problem of low-temperature plasmas refers to determining discharge parameters such as voltage amplitude and frequency from plasma characteristics, including plasma density, electric field and electron temperature. Within the framework of fluid description, it is usually very challenging to address inverse problems by using traditional discretization methods. In this work, physics-informed neural networks (PINNs) are introduced to solve the inverse problem of atmospheric-pressure radio-frequency plasmas. The loss function of the PINNs is constructed by embedding three components: the main governing equations (continuity equation, Poisson equation, and drift–diffusion approximation), the discharge parameters to be inferred (voltage amplitude and frequency in this study), and additional electric field data. The well-trained PINNs can accurately recover the discharge parameters with errors within about 1%, while providing the full spatiotemporal evolution of plasma density, electric field, and flux. Furthermore, the effects of sampling positions, sampling sizes, and noise levels of the electric field data on the inversion accuracy of voltage amplitude and frequency are systematically investigated. The results demonstrate that PINNs are capable of achieving precise inversions of discharge parameters and accurate prediction of plasma characteristics under given experimental or computational data, thereby laying a foundation for the intelligent control of low-temperature plasmas.
  • 图 1  PINNs求解流体模型反问题结构图

    Fig. 1.  Schematic of PINNs for solving forward problem and inverse problem.

    图 2  PINNs训练过程中损失函数的变化曲线

    Fig. 2.  Variation curve of loss function in PINNs training process.

    图 3  训练过程中可训练参数幅值和频率的变化曲线

    Fig. 3.  Variation curve of amplitude and frequency of trainable parameters during training.

    图 4  由PINNs反演得到的边界条件和实际电压边界条件的比较

    Fig. 4.  Comparison between boundary conditions obtained by PINNs inversion and actual power supply boundary conditions.

    图 5  PINNs与传统流体模型在电子密度、离子密度和电场强度分布的对比结果 (a)—(c) 数值模拟结果; (d)—(f) PINNs 预测结果; (g)—(i) 误差分布

    Fig. 5.  The comparison results of electron density, ion density and electric field intensity distribution between PINNs and traditional fluid model: (a)–(c)Numerical simulation results; (d)–(f)prediction results of PINNs; (g)–(i)error distribution.

    图 6  PINNs 与传统流体模型在电子通量、离子通量和电势分布的对比结果 (a)—(c) 流体模型结果; (d)—(f) PINNs预测结果; (g)—(i) 误差分布

    Fig. 6.  Comparison of electron flux, ion flux and potential distribution: (a)–(c)The result of fluid model; (d)–(f) the prediction result of PINNs; (g)–(i) the error.

    图 7  电流峰值时刻PINNs与传统流体模型计算得到的(a)电场、(b)电子密度和离子密度的对比

    Fig. 7.  Comparison of (a) electric field, (b) electron density and ion density calculated by current peak time PINNs and traditional fluid model.

    图 8  不同数量采样点条件下PINNs反演电压幅值与频率相对误差的变化曲线

    Fig. 8.  Variation curves of amplitude and frequency relative errors of PINNs inversion under different number of sampling points.

    图 9  不同采样点噪声条件下PINNs反演的幅值和频率相对误差的变化曲线

    Fig. 9.  Variation curves of amplitude and frequency relative errors of PINNs inversion under different noise level of sampling points.

    表 1  在不同采样点位置条件下PINNs反演的幅值和频率

    Table 1.  Amplitude and frequency of PINNs inversion at different sampling points.

    数据集 采样点位置 幅值$ {\hat V_0} $ 幅值相对误差/% 频率$ \hat f $ 频率相对误差/%
    1 $E(0, t)$ 435.83 0.94811 10.046 0.46051
    2 $E\left(\dfrac{1}{4}d, t\right)$ 434.03 1.3559 9.981 0.18646
    3 $E\left(\dfrac{1}{2}d, t\right)$ 431.73 1.88 10.023 0.23
    4 $E\left(\dfrac{3}{4}d, t\right)$ 432.65 1.67 10.015 0.15
    5 $E(d, t)$ 437.01 0.68 10.010 0.099
    6 $E(x, 0)$ nan nan nan nan
    7 ${N_{\text{e}}}\left(\dfrac{1}{2}d, t\right) + {N_{\text{i}}}\left(\dfrac{1}{2}d, t\right)$ nan nan nan nan
    下载: 导出CSV

    表 2  在不同采样点数量条件下PINNs反演的幅值和频率

    Table 2.  Amplitude and frequency of PINNs inversion with different sampling points.

    数据集采样点数量幅值$ {\hat V_0} $幅值
    相对误差/%
    频率$ \hat f $频率
    相对误差/%
    1200436.270.84710.0100.10
    2150437.500.56910.0110.12
    3100437.010.67910.0110.10
    450436.830.72010.0130.13
    530436.210.86010.0110.11
    620434.921.15410.0100.10
    710429.582.36810.0190.19
    下载: 导出CSV

    表 3  不同噪声水平条件下PINNs反演的幅值和频率

    Table 3.  Amplitude and frequency of PINNs inversion under different noise levels.

    数据集 噪声
    水平
    幅值
    $ {\hat V_0} $/V
    幅值
    相对误差/%
    频率$ \hat f $
    /MHz
    频率
    相对误差/%
    1 0.01 438.34 0.378 10.010 0.098
    2 0.02 438.48 0.345 10.008 0.078
    3 0.04 439.37 0.144 10.002 0.021
    4 0.06 439.78 0.051 10.009 0.092
    5 0.08 434.44 1.263 9.934 0.646
    7 0.1 432.09 1.797 9.915 0.850
    8 0.12 428.05 2.716 9.8873 1.127
    下载: 导出CSV
  • [1]

    Massines F, Gouda G 1998 J. Phys. D: Appl. Phys. 31 3411Google Scholar

    [2]

    Huang X, Li Y, Zhong X 2014 Nanoscale Res. Lett. 9 572Google Scholar

    [3]

    Jüstel T, Krupa J C, Wiechert D U 2001 J. Lumin. 93 179Google Scholar

    [4]

    Magureanu M, Bradu C, Piroi D, Mandache N B, Parvulescu V 2013 Plasma Chem. Plasma Process. 33 51Google Scholar

    [5]

    Whittaker A G, Graham E M, Baxter R L, Jones A C, Richardson P R, Meek G, Campbell G A, Aitken A, Baxter H C 2004 J. Hosp. Infect. 56 37Google Scholar

    [6]

    Santhanakrishnan A, Reasor D A, Lebeau R P 2009 Phys. Fluids 21 043602Google Scholar

    [7]

    Shukla P K, Mamun A 2015 Introduction to Dusty Plasma Physics (Boca Raton: CRC Press

    [8]

    Zhang X, Zhang X F, Li H P, Wang L Y, Zhang C, Xing X H, Bao C Y 2014 Appl. Microbiol. Biotechnol. 98 5387Google Scholar

    [9]

    Chen Z Q, Liu M H, Xia G Q, Huang Y R 2012 IEEE Trans. Plasma Sci. 40 2861Google Scholar

    [10]

    Munro J J, Tennyson J 2008 J. Vac. Sci. Technol. A 26 865Google Scholar

    [11]

    Lu X P, Reuter S, Laroussi M, Liu D W 2019 Nonequilibrium Atmospheric Pressure Plasma Jets: Fundamentals, Diagnostics, and Medical Applications (Boca Raton: CRC Press

    [12]

    Kong M G, Kroesen G, Morfill G, Nosenko T, Shimizu T, VanDijk J, Zimmermann J L 2009 New J. Phys. 11 115012Google Scholar

    [13]

    Ames W F 2014 Numerical Methods for Partial Differential Equations (Cambridge, MA: Academic Press

    [14]

    Raissi M, Perdikaris P, Karniadakis G E 2019 J. Comput. Phys. 378 686Google Scholar

    [15]

    Wu C X, Zhu M, Tan Q Y, Kartha Y, Lu L 2023 Comput. Methods Appl. Mech. Eng. 403 115671Google Scholar

    [16]

    Li W K, Zhang Y T 2025 J. Appl. Phys. 137 20

    [17]

    Li W, Zhang Y 2025 Phys. Fluids 37 077159Google Scholar

    [18]

    Kawaguchi S, Takahashi K, Ohkama H, Makabe T 2020 Plasma Sources Sci. Technol. 29 025021Google Scholar

    [19]

    Wu B, Zhong L 2022 Frontier Academic Forum of Electrical Engineering (Beijing: Chinese Society of Electrical Engineering) p1083

    [20]

    仲林林, 吴冰钰, 吴奇 2024 电工技术学报 39 3457

    Zhong L L, Wu B Y, Wu Q 2024 Trans. China Electrotechn. Soc. 39 3457

    [21]

    方泽, 潘泳全, 戴栋, 张俊勃 2024 物理学报 73 145201Google Scholar

    Fang Z, Pan Y Q, Dai D, Zhang J B 2024 Acta Phys. Sin. 73 145201Google Scholar

    [22]

    Kwon H, Kim E, Cho S, Kwon D C, Choe H, Choi M 2024 East Asian J. Appl. Math. 14 636

    [23]

    Zhang B Y, Cai G B, Weng H Y, Wang W Z, Liu L H, He B J 2023 Mach. Learn. Sci. Technol. 4 045015Google Scholar

    [24]

    Rutigliano N, Rossi R, Murari A, Gelfusa M, Craciunescu T, Mazon D, Gaudio, P 2025 Plasma Phys. Control. Fusion 67 065029Google Scholar

    [25]

    Rossi R, Gelfusa M, Murari A 2023 Nucl. Fusion 63 126059Google Scholar

    [26]

    Zhang Y T, Li Q Q, Lou J, Lou J and Li Q M 2010 Appl. Phys. Lett. 97 14

    [27]

    Massines F, Rabehi A, Decomps P, Gadri R B, Ségur P, Mayoux C 1998 J. Appl. Phys. 83 2950Google Scholar

    [28]

    Vanraes P, Nikiforov A, Bogaerts A, Leys C 2018 Sci. Rep. 8 10919Google Scholar

    [29]

    Shi J J, Kong M G 2005 J. Appl. Phys. 97 023306Google Scholar

    [30]

    Yuan X H, Raja L L 2003 IEEE Trans. Plasma Sci. 31 495Google Scholar

    [31]

    Chen C Q, Yang Y H, Xiang Y, Hao W R 2025 J. Sci. Comput. 104 54Google Scholar

    [32]

    Tian Y J, Zhang Y Q, Zhang H B 2023 Mathematics 11 682Google Scholar

    [33]

    王绪成, 李文凯, 艾飞, 刘志兵, 张远涛 2023 力学学报 55 2900

    Wang X C, Li W K, Ai F, Liu Z B, Zhang Y T 2023 Chin. J. Theor. Appl. Mech. 55 2900

    [34]

    Zhang Y T, Gao S H, Zhu Y Y 2023 J. Appl. Phys. 133 5

    [35]

    Moritz P, Nishihara R, Jordan M 2016 Artif. Intell. Stat. 1 249

  • [1] 王宇铎, 陈嘉鑫, 李彪. 基于扩展混合训练物理信息神经网络的非线性薛定谔方程求解和参数发现. 物理学报, doi: 10.7498/aps.74.20250422
    [2] 刘明, 张斯淇, 李宏. 基于物理信息神经网络的绝热捷径动力学分析. 物理学报, doi: 10.7498/aps.74.20250147
    [3] 张照阳, 王青旺. 信息表征-损失优化改进的物理信息神经网络求解偏微分方程. 物理学报, doi: 10.7498/aps.74.20250707
    [4] 秦成龙, 赵亮, 蒋刚. 机器学习模型预测稀土化合物的热力学稳定性. 物理学报, doi: 10.7498/aps.74.20250362
    [5] 梁晨, 卢少瑜, 黄栋, 陈鑫, 冯岩. 基于机器学习从单颗粒动力学中诊断尘埃等离子体全局性质信息. 物理学报, doi: 10.7498/aps.74.20251129
    [6] 欧阳鑫健, 张岩星, 王之龙, 张锋, 陈韦嘉, 庄园, 揭晓, 刘来君, 王大威. 面向铁电相变的机器学习: 基于图卷积神经网络的分子动力学模拟. 物理学报, doi: 10.7498/aps.73.20240156
    [7] 张东荷雨, 刘金宝, 付洋洋. 激光维持等离子体多物理场耦合模型与仿真. 物理学报, doi: 10.7498/aps.73.20231056
    [8] 方泽, 潘泳全, 戴栋, 张俊勃. 基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用. 物理学报, doi: 10.7498/aps.73.20240343
    [9] 田十方, 李彪. 基于梯度优化物理信息神经网络求解复杂非线性问题. 物理学报, doi: 10.7498/aps.72.20222381
    [10] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, doi: 10.7498/aps.72.20230646
    [11] 杨孟奇, 吴福源, 陈致博, 张翼翔, 陈一, 张晋川, 陈致真, 方志凡, Rafael Ramis, 张杰. 高密度等离子体喷流高速对撞的二维辐射流体模拟研究. 物理学报, doi: 10.7498/aps.71.20220948
    [12] 艾飞, 刘志兵, 张远涛. 结合机器学习的大气压介质阻挡放电数值模拟研究. 物理学报, doi: 10.7498/aps.71.20221555
    [13] 陈江芷, 杨晨温, 任捷. 基于波动与扩散物理系统的机器学习. 物理学报, doi: 10.7498/aps.70.20210879
    [14] 孙安邦, 李晗蔚, 许鹏, 张冠军. 流注放电低温等离子体中电子输运系数计算的蒙特卡罗模型. 物理学报, doi: 10.7498/aps.66.195101
    [15] 刘富成, 晏雯, 王德真. 针板型大气压氦气冷等离子体射流的二维模拟. 物理学报, doi: 10.7498/aps.62.175204
    [16] 张增辉, 张冠军, 邵先军, 常正实, 彭兆裕, 许昊. 大气压Ar/NH3介质阻挡辉光放电的仿真研究. 物理学报, doi: 10.7498/aps.61.245205
    [17] 张增辉, 邵先军, 张冠军, 李娅西, 彭兆裕. 大气压氩气介质阻挡辉光放电的一维仿真研究. 物理学报, doi: 10.7498/aps.61.045205
    [18] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, doi: 10.7498/aps.59.8747
    [19] 刘成森, 王德真. 空心圆管端点附近等离子体源离子注入过程中鞘层的时空演化. 物理学报, doi: 10.7498/aps.52.109
    [20] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, doi: 10.7498/aps.49.1764
计量
  • 文章访问数:  255
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-20

/

返回文章
返回