搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于辅助阳极的氧化铟锡射频磁控溅射离子能量分布调控

黄天源 赵一凡 莫超超 梅杨 张潇漫 季佩宇 吴雪梅

引用本文:
Citation:

基于辅助阳极的氧化铟锡射频磁控溅射离子能量分布调控

黄天源, 赵一凡, 莫超超, 梅杨, 张潇漫, 季佩宇, 吴雪梅

Ion energy distribution modulation in RF magnetron sputtering of ITO via auxiliary anode bias

HUANG Tianyuan, ZHAO Yifan, MO Chaochao, MEI Yang, ZHANG Xiaoman, JI Peiyu, WU Xuemei
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 磁控溅射沉积透明导电氧化物薄膜过程中, 理解离子动力学过程是揭示“溅射损伤”机理并发展损伤抑制策略的关键. 本研究在纯Ar气氛下, 以氧化铟锡为阴极靶材, 系统探讨辅助阳极正偏压对射频磁控放电中基底入射离子能量分布的影响. 结果表明, 入射正离子包括O+, Ar+, In+, Sn+及多种金属氧化物分子离子和双电荷离子, 其能量由溅射原子的初始逸出能与等离子体电势共同决定, 并随辅助阳极偏压的升高而增强. 负离子源于阴极溅射, 其中O和O2负离子能量分布宽广且呈多峰结构, 与阴极电压、等离子体电势的射频振荡及离子输运的弛豫效应密切相关. 金属氧化物负离子(InO, InO2, SnO-和SnO2-)对射频鞘响应滞后, 其高能峰向阴极偏置电压收敛. 高能负离子是导致“溅射损伤”的主要原因, 施加辅助阳极正偏压能有效降低其能量, 为透明导电氧化物薄膜损伤抑制提供潜在解决方案.
    Understanding the dynamics of ions in the magnetron sputtering process of transparent conductive oxide (TCO) films is essential for clarifying the mechanisms of sputtering-induced damage and developing effective suppression strategies. In this work, indium tin oxide (ITO) is used as a cathode target in an RF magnetron sputtering system operating under pure argon atmosphere, and a positively biased auxiliary anode is introduced to modulate the plasma potential and investigate its effect on the ion energy distribution functions (IEDFs) at the substrate position. The ion energy spectra are measured using a commercial energy–mass spectrometer (EQP 1000, Hiden), and the plasma parameters such as potential and electron density are characterized using a radio-frequency compensated Langmuir probe. The results show that the incident positive ions consist mainly of O+, Ar+, In+, Sn+, as well as multiple metal oxide molecular and doubly charged ions. Their energies are determined by the combined effects of the initial ejection or backscattering energy of sputtered particles and the plasma potential. Increasing the auxiliary anode bias leads to an elevation of the plasma potential, thereby enhancing both the kinetic energy and flux of positive ions. In contrast, negative ions such as O and O2 originate predominantly from cathode sputtering, exhibiting broad, multi-peaked energy distributions that are strongly influenced by RF oscillations of the cathode voltage and plasma potential, as well as relaxation effects during ion transport. Heavier metal oxide negative ions (InO, InO2, SnO, SnO2) respond more slowly to RF sheath modulation, with their high-energy peaks converging toward the cathode bias potential. Applying a positive auxiliary anode bias effectively reduces the cathode bias voltage, thereby suppressing the high-energy tail of negative ions without significantly affecting their total energy-integrated intensity. This demonstrates that auxiliary anode biasing provides an effective means for adjusting the ion energy distributions in magnetron sputtering discharges. The proposed approach provides a potential pathway for mitigating sputtering-induced damage and improving the structural and electronic quality of ITO films. Future work will focus on correlating the measured ion energy modulation with comprehensive film characterizations—including optical, electrical, and interfacial analyses—to further verify the physical mechanisms and evaluate the practical effectiveness of damage suppression during TCO deposition.
  • 图 1  基于辅助阳极的ITO射频磁控溅射装置及等离子体诊断系统

    Fig. 1.  RF magnetron sputtering system for ITO film deposition with auxiliary anode and integrated plasma diagnostics.

    图 2  ITO射频磁控放电中, 阴极偏置电压$ {V}_{\mathrm{C}0} $、附加阳极电流$ {I}_{\mathrm{A}\mathrm{A}} $及等离子体电势$ {V}_{\mathrm{P}} $随辅助阳极偏压$ {V}_{\mathrm{A}\mathrm{A}} $的变化关系

    Fig. 2.  Cathode bias voltage $ {V}_{\mathrm{C}0} $, auxiliary anode current $ {I}_{\mathrm{A}\mathrm{A}} $, and plasma potential $ {V}_{\mathrm{P}} $ as functions of the auxiliary anode bias $ {V}_{\mathrm{A}\mathrm{A}} $ during an ITO RFMS discharge.

    图 3  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)对氩同位素离子36Ar+ (m/z = 36)和40Ar+ (m/z = 40)能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 3.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of argon isotope ions 36Ar+ (m/z = 36) and 40Ar+ (m/z = 40) in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 4  ITO射频磁控放电中, 不同辅助阳极偏压(0—+50 V)对36Ar+(m/z = 36), 40Ar2+(m/z = 20), O+(m/z = 16)和O2+(m/z = 32)离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 4.  Energy distributions of positive charged 36Ar+ (m/z = 36), 40Ar+ (m/z = 20), O+ (m/z = 16), and O2+ (m/z = 32) ions in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W). Measurements have been carried out for different auxiliary anode voltages ranging from 0 to +50 V.

    图 5  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)对In+(m/z = 115), In2+(m/z = 57.5), 118Sn+(m/z = 118), 118Sn2+(m/z = 59)和InSn+(m/z = 233)等金属离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 5.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of metal ions In+ (m/z = 115), In2+ (m/z = 57.5), 118Sn+ (m/z = 118), 118Sn2+ (m/z = 59), and InSn+ (m/z = 233) in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 6  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)对InO+(m/z = 131), InO2+(m/z = 147), InO3+(m/z = 163), SnO+(m/z = 134), SnO2+(m/z = 150), InSnO+(m/z = 249)和InSnO2+(m/z = 265)等金属氧化物离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 6.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of metal oxide ions InO+ (m/z = 131), InO2+ (m/z = 147), InO3+ (m/z = 163), SnO+ (m/z = 134), SnO2+ (m/z = 150), InSnO+ (m/z = 249), and InSnO2+ (m/z = 265) in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 7  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)下单电荷离子(Ar+, O+, O2+, In+, Sn+和InSn+)及双电荷离子(Ar2+, In2+和Sn2+)的能量积分强度(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 7.  Energy-integrated count rates of singly charged ions (Ar+, O+, O2+, In+, Sn+ and InSn+) and doubly charged ions (Ar2+, In2+, and Sn2+) in an ITO RFMS discharge at different auxiliary anode voltages from 0 to +50 V (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 8  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)下金属氧化物离子(InO+, InO2+, InO3+, SnO+, SnO2+, InSnO+和InSnO2+)的能量积分强度(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 8.  Energy-integrated count rates of metal oxide ions (InO+, InO2+, InO3+, SnO+, SnO2+, InSnO+, and InSnO2+) in an ITO RFMS discharge at different auxiliary anode voltages from 0 to +50 V (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 9  ITO射频磁控放电中, 不同辅助阳极偏压(0—+50 V)对O(m/z = 16)和O2(m/z = 32)负离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 9.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of O (m/z = 16) and O2 (m/z = 32) negative ions in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 10  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)对InO(m/z = 131), InO2(m/z = 147), SnO(m/z = 134)和InO2(m/z = 150)负离子能量分布的影响(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 10.  Effect of different auxiliary anode voltages (0 to +50 V) on the energy distributions of negative ions InO (m/z = 131), InO2 (m/z = 147), SnO (m/z = 134), and SnO2 (m/z = 150) in an ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 11  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)下负离子(O, O2, InO, InO2, SnO和SnO2)的能量积分强度(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 11.  Energy-integrated intensities of negative ions (O, O2, InO, InO2, SnO, and SnO2) in an ITO RFMS discharge at different auxiliary anode voltages from 0 to +50 V (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 12  ITO射频磁控放电中, 不同辅助阳极电压(0—+50 V)下基片台表面IEDFs的径向分布情况(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 12.  Radial distributions of IEDFs on the substrate surface under different auxiliary anode voltages from 0 to +50 V during ITO RFMS discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

    图 13  ITO射频磁控放电中, 辅助阳极电压$ {V}_{\mathrm{A}\mathrm{A}}=0\;\mathrm{V} $条件下近基片台表面等离子体电势Vp及电子密度ne的径向分布情况(气压: 0.6 Pa, 放电功率: 100 W)

    Fig. 13.  Radial distributions of plasma potential Vp and electron density ne near the substrate surface under auxiliary anode voltage $ {V}_{\mathrm{A}\mathrm{A}}=0\;\mathrm{V} $ during ITO RF magnetron discharge (Gas pressure: 0.6 Pa, discharge power: 100 W).

  • [1]

    Chavan G T, et al. 2023 Nanomaterials 13 1226Google Scholar

    [2]

    Suemori K 2023 Org. Electron. 116 106764Google Scholar

    [3]

    Li S, et al. 2021 Joule 5 1535Google Scholar

    [4]

    Park G, et al. 2025 Cell Rep. Phys. Sci. 6 102619Google Scholar

    [5]

    Zhao M J, et al. 2022 Vacuum 200 111034Google Scholar

    [6]

    Hossain M I, et al. 2025 Results in Surfaces and Interfaces 18 100383Google Scholar

    [7]

    杨志伟, 韩圣浩, 杨田林, 赵俊卿, 马瑾, 马洪磊 2000 物理学报 49 1196Google Scholar

    Yang Z W, Han S H, Yang T L, Zhao J Q, Ma J, Ma H L 2000 Acta Phys. Sin. 49 1196Google Scholar

    [8]

    Ishibashi S, et al. 1990 J. Vac. Sci. Technol. , A 8 1403Google Scholar

    [9]

    Dewald W et al. 2009 Thin Solid Films 518 1085Google Scholar

    [10]

    Le. A. H. T et al. 2019 Sol. Energy Mater. Sol. Cells 192 36Google Scholar

    [11]

    Konishi T, Ohdaira K 2017 Thin Solid Films 635 73Google Scholar

    [12]

    Caudevilla D, García-Hemme E, San Andrés E, et al. 2022 Mater. Sci. Semicond. Process 137 106189Google Scholar

    [13]

    Qiu D, et al. 2022 Sol. Energy 231 578Google Scholar

    [14]

    Petroski K A, Sagas J C 2020 Vacuum 182 109703Google Scholar

    [15]

    Hippler R, Cada M, Hubicka Z 2021 J. Vac. Sci. Technol. , A 39 043007Google Scholar

    [16]

    Hippler R, Cada M, Hubicka Z 2021 Plasma Sources Sci. Technol. 30 045003Google Scholar

    [17]

    Huang T Y, et al. 2024 Vacuum 221 112848Google Scholar

    [18]

    Welzel T, Ellmer K 2013 J. Phys. D: Appl. Phys. 46 315202Google Scholar

    [19]

    Toyoda H, et al. 2009 Appl. Phys. Express 2 126001Google Scholar

    [20]

    Li M Y, et al. 2024 Plasma Sci. Technol. 26 075506Google Scholar

    [21]

    Ellmer K, Wendt R, Wiesemann K 2003 Int. J. Mass Spectrom. 223-224 679

    [22]

    Hamers E A G, et al. 1998 Int. J. Mass. Spectrom. 173 91Google Scholar

    [23]

    Belkind A, Jansen F 1998 Surf. Coat. Technol. 99 52Google Scholar

    [24]

    Coburn J W, Kay E 1972 J. Appl. Phys. 43 4965Google Scholar

    [25]

    Woller K B, Whyte D G, Wright G M 2017 Phys. Plasmas 24 053513Google Scholar

    [26]

    Thompson M W 1968 Philosophical Magazine 18 377Google Scholar

    [27]

    Betz G, Husinsky W 2004 Philos. Trans. R. Soc. London, Ser. A 362 177Google Scholar

    [28]

    Pullins S H, Dressler R A, Torrents R, Gerlich D 2000 Z. Phys. Chem. 214 1279

  • [1] 许怡红, 范伟航, 王尘. 退火温度对磁控溅射掺锡氧化镓薄膜特性及其日盲光电探测器性能的影响. 物理学报, doi: 10.7498/aps.74.20240972
    [2] 落巨鑫, 高红丽, 邓金祥, 任家辉, 张庆, 李瑞东, 孟雪. 退火温度对氧化镓薄膜及紫外探测器性能的影响. 物理学报, doi: 10.7498/aps.72.20221716
    [3] 张文钊, 唐兴华, 李嘉庆, 施立群. 氘在碳钨共沉积层中的滞留行为研究. 物理学报, doi: 10.7498/aps.62.195202
    [4] 郭红力, 杨焕银, 唐焕芳, 侯海军, 郑勇林, 朱建国. 高压退火对0.65PMN-0.35PT薄膜结构、形貌及电学性能的影响. 物理学报, doi: 10.7498/aps.62.130704
    [5] 赵孔胜, 轩瑞杰, 韩笑, 张耕铭. 基于氧化铟锡的无结低电压薄膜晶体管. 物理学报, doi: 10.7498/aps.61.197201
    [6] 徐蕙, 王顺利, 刘爱萍, 陈本永, 唐为华. Cu/TiOx复合薄膜的电子态分析及其对亲水性的影响. 物理学报, doi: 10.7498/aps.59.3601
    [7] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, doi: 10.7498/aps.59.1263
    [8] 谢婧, 黎兵, 李愿杰, 颜璞, 冯良桓, 蔡亚平, 郑家贵, 张静全, 李卫, 武莉莉, 雷智, 曾广根. 射频磁控溅射法制备ZnS多晶薄膜及其性质. 物理学报, doi: 10.7498/aps.59.5749
    [9] 高立, 张建民. 带隙可调的Al,Mg掺杂ZnO薄膜的制备. 物理学报, doi: 10.7498/aps.58.7199
    [10] 李阳平, 刘正堂. 等离子体发射光谱诊断用于射频磁控溅射GaP薄膜的工艺参数优化. 物理学报, doi: 10.7498/aps.58.5022
    [11] 王振宁, 江美福, 宁兆元, 朱 丽. 磁控共溅射法制备的Zn2GeO4多晶薄膜结构及其光致发光研究. 物理学报, doi: 10.7498/aps.57.6507
    [12] 李阳平, 刘正堂, 刘文婷, 闫 峰, 陈 静. GeC薄膜的射频磁控反应溅射制备及性质. 物理学报, doi: 10.7498/aps.57.6587
    [13] 冯先进, 马 瑾, 葛松华, 计 峰, 王永利, 杨 帆, 马洪磊. 蓝宝石衬底SnO2:Sb薄膜的制备及结构和光致发光性质. 物理学报, doi: 10.7498/aps.56.4872
    [14] 王 楠, 孔春阳, 朱仁江, 秦国平, 戴特力, 南 貌, 阮海波. p型ZnO薄膜的制备及特性. 物理学报, doi: 10.7498/aps.56.5974
    [15] 李阳平, 刘正堂, 赵海龙, 刘文婷, 闫 锋. GaP薄膜的射频磁控溅射沉积及其计算机模拟. 物理学报, doi: 10.7498/aps.56.2937
    [16] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 退火温度对低温生长MgxZn1-xO薄膜光学性质的影响. 物理学报, doi: 10.7498/aps.55.437
    [17] 张锡健, 马洪磊, 王卿璞, 马 瑾, 宗福建, 肖洪地, 计 峰. 射频磁控溅射法生长MgxZn1-xO薄膜的结构和光学特性. 物理学报, doi: 10.7498/aps.54.4309
    [18] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, doi: 10.7498/aps.54.1731
    [19] 张德恒, 王卿璞, 薛忠营. 不同衬底上的ZnO薄膜紫外光致发光. 物理学报, doi: 10.7498/aps.52.1484
    [20] 刘洪祥, 魏合林, 刘祖黎, 刘艳红, 王均震. 磁镜场对射频等离子体中离子能量分布的影响. 物理学报, doi: 10.7498/aps.49.1764
计量
  • 文章访问数:  265
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-08-29
  • 修回日期:  2025-10-03
  • 上网日期:  2025-10-15

/

返回文章
返回