搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体沉积和刻蚀中离子与中性基团协同作用和表面形貌

宋柳琴 董婉 张逸凡 宋远红

引用本文:
Citation:

等离子体沉积和刻蚀中离子与中性基团协同作用和表面形貌

宋柳琴, 董婉, 张逸凡, 宋远红

Synergistic effect and surface morphology of ions and neutral groups in plasma deposition and etching

SONG Liuqin, DONG Wan, ZHANG Yifan, SONG Yuanhong
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
在线预览
  • 低温等离子体沉积与刻蚀技术在芯片制造、平板显示器和光伏等等离子体辅助制造领域中具有至关重要的作用. 而等离子体与材料之间的物理、化学相互作用机理, 是揭示工艺过程本质、优化制程参数、提升器件性能与可靠性的重要科学基础. 本工作基于流体混合模型并耦合表面形貌演化模型自洽模拟了不同放电参数下的等离子体放电特性以及沉积/刻蚀表面形貌, 并给出了一些研究实例的模拟结果与讨论. 在非晶硅薄膜沉积过程研究中发现, 等离子体放电过程所产生的电子密度径向分布不均匀, 会导致基片表面中性基团和离子通量分布乃至膜厚或膜质的不均匀. 其中, 离子能量分布还会影响薄膜中各元素的含量和成键情况, 进而影响薄膜质量和性能. 而在碳氟混合气体放电刻蚀SiO2研究中, 发现在裁剪电压波形的驱动下通过调节电极间距、谐波相位以及谐波次数, 可实现对离子与中性基团的灵活控制, 从而筛选出更优的放电参数以改善刻蚀效果. 在感性耦合氯混合气体刻蚀Si的过程中, 采用裁剪电压波形会使离子能量主要分布在高能区, 这能显著提高刻蚀效率. 综上, 通过混合模拟可以实现等离子体放电与沉积/刻蚀过程的自洽耦合, 总结离子与中性基团协同作用的本质规律, 为工艺与设备的优化提供参考.
    Low-temperature plasma deposition and etching technologies play a vital role in plasma-assisted manufacturing fields such as semiconductor chip fabrication, flat-panel displays, and photovoltaic devices. The physical and chemical interaction mechanisms between plasma and materials form the fundamental scientific basis for elucidating the nature of process dynamics, optimizing processing parameters, and improving device performance and reliability.In this work, by using a fluid hybrid model coupled with a surface profile evolution model, the plasma discharge characteristics and the deposition/etching surface profile under different discharge parameters are self-consistently simulated, and the simulation results and discussions of some research cases are also presented.During amorphous silicon thin-film deposition, it is found that the radial distribution of electron density generated in the plasma discharge process is non-uniform, which can lead to the non-uniform distribution of neutral and ion fluxes on the substrate surface, as well as the non-uniformity of film thickness or film quality. Moreover, the ion energy distribution strongly influences the composition and bonding configurations in the film, thereby affecting its quality and performance.In the studies of SiO2 etching using fluorocarbon mixed-gas discharges, it is found that under voltage waveform tailoring, adjusting the electrode gap, phase, and harmonic number can flexibly control ion and neutral fluxes. This allows the discharge parameters to be optimized in order to improve etching performance. During Si etching with inductively coupled Ar/Cl2 plasma, the application of tailored bias waveform causes the ion energy to accumulate predominantly in the high-energy range, which can significantly enhance etching efficiency.In summary, this work systematically investigates how the self-consistent coupling between plasma discharge and deposition/etching processes can be achieved through the hybrid simulation, while further elucidating the essential synergistic roles of ions and neutral radicals. It is hoped that these findings will serve as valuable references for the optimizing plasma processes and equipment.
  • 图 1  不同气压(2—4 Torr)下, SiH4/H2混合气体放电中, 放电条件为电极长度11 cm, 电极间距2 cm, 驱动频率13.56 MHz, 电压幅值50 V, 气体比例固定为SiH4/H2 = 1/9 (a)—(c) 周期平均电子密度; (d)—(f) SiH3基团密度的空间分布

    Fig. 1.  In the discharge of SiH4/H2 at different pressures (2–4 Torr), the discharge conditions are two parallel plates with a length of 11 cm and a distance of 2 cm between them, driving frequency is 13.56 MHz and a voltage amplitude of 50 V, and SiH4/H2 gas ratio is fixed at 1/9: (a)–(c) Period-averaged electron density; (d)–(f) spatial distribution of SiH3 density.

    图 2  沉积时间为30 s时, 不同气压下SiH4/H2混合气体放电的薄膜的表面形貌径向分布, 放电条件与图1一致 (a) 2 Torr, (b) 3 Torr, (c) 4 Torr

    Fig. 2.  Profiles formed after deposition time of 30 s for different pressures: (a) 2 Torr; (b) 3 Torr; (c) 4 Torr. the discharge conditions are the same as in Fig. 1.

    图 3  不同气压(2—4 Torr)下SiH4/H2混合气体放电中的离子能量分布, 放电条件与图1一致 (a) 径向中心处; (b) 电极边缘处接地电极表面

    Fig. 3.  The ion energy distribution in SiH4/H2 mixed gas discharge at different pressures (2–4 Torr): (a) At the radial center; (b) ground the electrode surface at the edge of the electrode; the discharge conditions are the same as in Fig. 1.

    图 4  SiH4/H2混合气体放电中, 不同气压(2—4 Torr)下沉积薄膜的氢含量、Ⅱ类反应占比以及空位占比, 放电条件与图1一致

    Fig. 4.  The hydrogen content, reaction Ⅱ content and vacancy content for different pressures (2–4 Torr), the discharge conditions are the same as in Fig. 1.

    图 5  SiH4/H2混合气体放电中, 不同SiH4含量(10%—90%)下(a)—(c) 周期平均电子密度和(d)—(f) SiH3基团密度的空间分布. 放电条件: 电极长度 11 cm, 电极间距2 cm, 驱动频率13.56 MHz, 电压幅值50 V, 气压2 Torr

    Fig. 5.  Spatially resolved and RF period-averaged electron density (a)–(c) and SiH3 density (d)–(f) for different SiH4 contents (10%–90%). Discharge condition: Two parallel plates with a length of 11 cm and a distance of 2 cm between them. The frequency used in this work is 13.56 MHz and a voltage amplitude of 50 V. The discharge pressure is 2 Torr.

    图 6  沉积时间为30 s时, 不同SiH4含量下SiH4/H2混合气体放电的薄膜的表面形貌径向分布, 放电条件与图5一致 (a) 10%, (b) 50%, (c) 90%

    Fig. 6.  Profiles formed after deposition time of 30 s for different SiH4 contents: (a) 10%; (b) 50%; (c) 90%. The discharge conditions are the same as in Fig. 5.

    图 7  不同SiH4含量(10%—90%)下SiH4/H2混合气体放电中(a) 径向中心处和(b) 电极边缘处接地电极表面的离子能量分布, 放电条件与图5一致

    Fig. 7.  The ion energy distribution in SiH4/H2 mixed gas discharge at different SiH4 contents (from 10% to 90%): (a) At the radial center; (b) ground the electrode surface at the edge of the electrode. The discharge conditions are the same as in Fig. 5.

    图 8  SiH4/H2混合气体放电中, 不同SiH4含量(10%—90%)下的氢含量、Ⅱ 类反应占比以及空位占比, 放电条件与图5一致

    Fig. 8.  The hydrogen content, reaction Ⅱ content and vacancy content for different SiH4 contents (from 10% to 90%), the discharge conditions are the same as in Fig. 5.

    图 9  (a) 不同相位角下双频幅值非对称电压波形; (b) 自偏压和平均离子能量变化情况[31]

    Fig. 9.  (a) Dual-frequency tailored voltage waveforms; (b) variations of self-bias voltage and mean ion energy as a function of phase[31].

    图 10  不同相位角$ \theta $下驱动极板处的(a) 离子通量和(b) 中性基团通量[31]

    Fig. 10.  (a) Ion fluxes and (b) neutral fluxes at the powered electrode for different phase angle $ \theta $, respectively[31].

    图 11  不同相位角下的刻蚀形貌 (刻蚀时间: 70 s)[31] (a) θ = 15°; (b) θ = 60°; (c) θ = 90°

    Fig. 11.  The etching profiles at different phase angle (ething time: 70 s)[31]: (a) θ = 15°; (b) θ = 60°; (c) θ = 90°.

    图 12  不同电极间距下的刻蚀形貌[31] (a) 3 cm; (b) 4 cm; (c) 5 cm

    Fig. 12.  Etching profiles for different gap distance[31]: (a) 3 cm; (b) 4 cm; (c) 5 cm.

    图 13  刻蚀时间为150 s时, 在接地电极处的刻蚀形貌 (a) N = 1, (b) N = 2, (c) N = 3; 在功率电极处的刻蚀形貌 (d) N = 1, (e) N = 2, (f) N = 3; 放电条件与图3相同, 灰色部分为光刻胶, 黑色部分为SiO2, 其余颜色表示材料表面上的聚合物或钝化层[35]

    Fig. 13.  Etching profiles at the grounded electrode for (a) N = 1, (b) N = 2, (c) N = 3; and at the powered electrode for (d) N = 1, (e) N = 2, (f) N = 3 after an etching time of 150 s, the discharge conditions are the same as those in Fig. 3, grey material is the photoresist, black material is SiO2, other colors represent polymer or passivation layers on the material surface[35].

    图 14  N = 1, 2, 3 (a) 功率电极与接地电极处的总离子通量; (b) CF2, CF和H通量之和; (c) 中性通量与离子通量比值$ (({\varGamma}_{{\text{CF}}_{2}}+ $$ {\varGamma}_{\text{CF}}+\varGamma_{\text{H}})/{\varGamma}_{{i}, \text{Total}}) $; (d) 平均离子能量[35]

    Fig. 14.  Total ion flux (a), the sum of the CF2, CF and H fluxes (b), the Syn value (defined as $ (({\varGamma}_{{\text{CF}}_{2}}+{\varGamma}_{\text{CF}}+\varGamma_{\text{H}})/{\varGamma}_{{i}, \text{Total}}) $ (c) , and the mean ion energy (d) at the powered and the grounded electrodes at N = 1, 2, 3[35].

    图 15  (a) 放电腔室结构和网格剖分示意图; (b) 下极板施加的裁剪电压波形

    Fig. 15.  (a) The schematic of discharge chamber structure and mesh grid; (b) the schematic of the tailored bias waveform applied to the lower electrode.

    图 16  密度剖面图 (a) Cl; (b) Ar+; (c) Cl+; (d) $ {\text{Cl}}_{2}^{+} $

    Fig. 16.  Density profiles: (a) Cl; (b) Ar+; (c) Cl+; (d) $ {\text{Cl}}_{2}^{+} $.

    图 17  离子能量分布 (a) 裁剪电压波形; (b) 射频偏压波形

    Fig. 17.  Ion energy distribution: (a) The tailored bias voltage waveform; (b) radio frequency (RF) bias waveform.

    图 18  (a) 裁剪电压波形和(b) 射频偏压波形下的放电中心处刻蚀形貌图(刻蚀时间: 9 s)

    Fig. 18.  Etching profiles at the discharge center under the tailored bias waveform (a) and the RF bias waveform (b) (etching time: 9 s).

  • [1]

    帕斯卡·夏伯特, 尼古拉斯·布雷斯韦著 (王友年, 徐军, 宋远红译) 2015 射频等离子体物理学(北京: 科学出版社)

    Chabert P, Braithwait N (translated by Wang Y N, Xu J, Song Y H) 2015 Physics of Radio-Frequency Plasmas (Beijing: Science Press

    [2]

    力伯曼, 里登伯格著 (蒲以康译) 2007 等离子体放电原理与材料处理(北京: 科学出版社)

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Material Processing (Beijing: Science Press

    [3]

    Vossen J L, Kern W 1991 Thin Film Processes II (Academic Press) p525

    [4]

    Yu C, Gao K, Peng C W, He C R, Wang S B, Shi W, Allen V, Zhang J T, Wang D Z, Tian G Y, Zhang Y F, Jia W Z, Song Y H, Hu Y Z, Colwell J, Xing C F, Ma Q, Wu H T, Guo L Y, Dong G Q, Jiang H, Wu H H, Wang X Y, Xu D C, Li K, Peng J, Liu W Z, Chen D, Lennon A, Cao X M, De Wolf S, Zhou J, Yang X B, Zhang X H 2023 Nat. Energy 8 1375Google Scholar

    [5]

    Huang S, Huard C, Shim S, Nam S K, Song I C, Lu S Q, Kushner M J 2019 J. Vacuum Sci. Technol. A 37 031304Google Scholar

    [6]

    Ma X Q, Zhang S Q, Dai Z L, Wang Y N 2017 Plasma Sci. Technol. 19 085502Google Scholar

    [7]

    Huard C M, Sriraman S, Paterson A, Kushner M J 2018 J. Vacuum Sci. Technol. A 36 06B101Google Scholar

    [8]

    Huard C M, Zhang Y T, Sriraman S, Paterson A, Kanarik K J, Kushner M J 2017 J. Vacuum Sci. Technol. A 35 031306Google Scholar

    [9]

    Huard C M 2018 Ph. D. Dissertation (University of Michigan

    [10]

    Funde A M 2011 Ph. D. Dissertation (Pune University

    [11]

    Matsuda A, Goto T 1989 MRS Online Proceedings Library 164 3Google Scholar

    [12]

    Matsuda A 1983 J. Non-Cryst. Solids 59 767

    [13]

    Matsuda A 2004 J. Non-Cryst. Solids 338 1

    [14]

    Crose M G 2018 Ph. D. Dissertation (University of California

    [15]

    Tinck S, Bogaerts A 2012 Plasma Process. Polym. 9 522Google Scholar

    [16]

    Kim H J 2021 Plasma Sources Sci. Technol. 30 065001Google Scholar

    [17]

    Kim H J, Lee K, Park H 2023 Plasma Sources Sci. Technol. 32 115008Google Scholar

    [18]

    Kim H J, Kim J S, Lee H J 2019 J. Appl. Phys. 126 173301Google Scholar

    [19]

    Kim H J, Lee H J 2016 Plasma Sources Sci. Technol. 25 065006Google Scholar

    [20]

    Donkó Z, Schulze J, Heil B G, Czarnetzki U 2009 J. Phys. D. Appl. Phys. 42 025205Google Scholar

    [21]

    Schulze J, Schungel E, Czarnetzki U 2009 J. Phys. D: Appl. Phys. 42 092005Google Scholar

    [22]

    Czarnetzki U, Heil B J, Schulze J, Donkó Z, Mussenbrock T, Brinkmann R P, 2009 J. Phys. : Conf. Ser. 162 012010Google Scholar

    [23]

    Schulze J, Schungel E, Czarnetzki U 2011 Plasma Sources Sci. Technol. 20 015017Google Scholar

    [24]

    Schulze J, Derzsi A, Donkó Z 2011 Plasma Sources Sci. Technol. 20 045008Google Scholar

    [25]

    Bruneau B, Lafleur T, Gans T, Connell D O’, Greb A, Korolov I, Derzsi A, Donkó Z, Brandt S, Schüngel E, Schulze J, Diomede P, Economou D J, Longo S, Johnson E V, Booth J P 2016 Plasma Sources Sci. Technol. 25 01LT02Google Scholar

    [26]

    Bruneau B, Novikova T, Lafleur T, Booth J P, Johnson E V 2014 Plasma Sources Sci. Technol. 23 065010Google Scholar

    [27]

    Ju S P, Weng C I, Chang J G, Hwang C C 2002 Am. Vacuum Soc. 20 946

    [28]

    翟世铭, 廖黄盛, 周耐根, 黄海宾, 周浪 2020 物理学报 69 076801Google Scholar

    Zhai S M, Liao H S, Zhou N G, Huang H B, Zhou L 2020 Acta Phys. Sin. 69 076801Google Scholar

    [29]

    阮聪, 孙晓民, 宋亦旭 2014 物理学报 64 038201

    Ruan C, Sun X M, Song Y X 2014 Acta Phys. Sin. 64 038201

    [30]

    贾文柱 2018 博士学位论文(大连: 大连理工大学)

    Jia W Z 2018 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [31]

    董婉 2022 博士学位论文(大连: 大连理工大学)

    Dong W 2022 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [32]

    Zhang Y F, Dong W, Jia W Z, Song Y H 2025 Plasma Sources Sci. Technol. 34 065011Google Scholar

    [33]

    张逸凡 2025 博士学位论文(大连: 大连理工大学)

    Zhang Y F 2025 Ph. D. Dissertation (Dalian: Dalian University of Technology

    [34]

    Dong W, Zhang Y F, Dai Z L, Schulze J, Song Y H, Wang Y N 2022 Plasma Sources Sci. Technol. 31 025006Google Scholar

    [35]

    Dong W, Song L Q, Zhang Y F, Wang L, Song Y H, Schulze J 2025 Plasma Process. Polym. 22 70026Google Scholar

    [36]

    宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红 2022 物理学报 71 170201Google Scholar

    Song L Q, Jia W Z, Dong W, Zhang Y F, Dai Z L, Song Y H 2022 Acta Phys. Sin. 71 170201Google Scholar

    [37]

    Qu C H, Sakiyama Y, Agarwal P, Kushner M J 2021 J. Vac. Sci. Technol. A 39 052403Google Scholar

    [38]

    MA Z Q 2007 Int. J. Mod. Phys. B 21 4299Google Scholar

    [39]

    Amanatides E, Stamou S, Mataras D 2001 J. Appl. Phys. 90 5786Google Scholar

    [40]

    Kessels W M M, van de Sanden M C M, Severens R J, Schram D C 2000 J. Appl. Phys. 87 3313Google Scholar

    [41]

    Fukawa M, Suzuki S, Guo L H, Kondo M, Matsuda A 2001 Sol. Energy Mater. Sol. Cells 66 217Google Scholar

    [42]

    Abe Y, Ishikawa K, Takeda K, Tsutsumi T, Fukushima A, Kondo H, Sekine M, Hori M 2017 Appl. Phys. Lett. 110 043902Google Scholar

  • [1] 宋柳琴, 贾文柱, 董婉, 张逸凡, 戴忠玲, 宋远红. 容性耦合放电等离子体增强氧化硅薄膜沉积模拟研究. 物理学报, doi: 10.7498/aps.71.20220493
    [2] 谭再上, 吴小蒙, 范仲勇, 丁士进. 热退火对等离子体增强化学气相沉积SiCOH薄膜结构与性能的影响. 物理学报, doi: 10.7498/aps.64.107701
    [3] 何素明, 戴珊珊, 罗向东, 张波, 王金斌. 等离子体增强化学气相沉积工艺制备SiON膜及对硅的钝化. 物理学报, doi: 10.7498/aps.63.128102
    [4] 吴俊, 马志斌, 沈武林, 严垒, 潘鑫, 汪建华. CVD金刚石中的氮对等离子体刻蚀的影响. 物理学报, doi: 10.7498/aps.62.075202
    [5] 杨宏军, 宋亦旭, 郑树琳, 贾培发. 基于压缩表示的离子刻蚀仿真三维表面演化方法. 物理学报, doi: 10.7498/aps.62.208201
    [6] 侯国付, 薛俊明, 袁育杰, 张晓丹, 孙建, 陈新亮, 耿新华, 赵颖. 高压射频等离子体增强化学气相沉积制备高效率硅薄膜电池的若干关键问题研究. 物理学报, doi: 10.7498/aps.61.058403
    [7] 李宇杰, 谢凯, 李效东, 许静, 韩喻, 杜盼盼. 低温等离子体增强化学气相沉积法制备Ge反opal三维光子晶体及其光学性能. 物理学报, doi: 10.7498/aps.59.1839
    [8] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, doi: 10.7498/aps.59.1190
    [9] 张晓丹, 孙福和, 许盛之, 王光红, 魏长春, 孙建, 侯国付, 耿新华, 熊绍珍, 赵颖. 单室沉积p-i-n型微晶硅薄膜太阳电池性能优化的研究. 物理学报, doi: 10.7498/aps.59.1344
    [10] 袁贺, 孙长征, 徐建明, 武庆, 熊兵, 罗毅. 基于等离子体增强化学气相沉积技术的光电子器件多层抗反膜的设计和制作. 物理学报, doi: 10.7498/aps.59.7239
    [11] 吕 玲, 龚 欣, 郝 跃. 感应耦合等离子体刻蚀p-GaN的表面特性. 物理学报, doi: 10.7498/aps.57.1128
    [12] 葛 洪, 张晓丹, 岳 强, 赵 静, 赵 颖. 甚高频等离子体增强化学气相沉积大面积平行板电极间真空电势差分布研究. 物理学报, doi: 10.7498/aps.57.5105
    [13] 杨杭生. 等离子体增强化学气相沉积法制备立方氮化硼薄膜过程中的表面生长机理. 物理学报, doi: 10.7498/aps.55.4238
    [14] 张晓丹, 赵 颖, 高艳涛, 朱 锋, 魏长春, 孙 建, 王 岩, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积制备微晶硅太阳电池的研究. 物理学报, doi: 10.7498/aps.54.1899
    [15] 王 淼, 李振华, 竹川仁士, 齐藤弥八. 利用微波等离子体增强化学气相沉积法定向生长纳米碳管的研究. 物理学报, doi: 10.7498/aps.53.888
    [16] 曾湘波, 廖显伯, 王 博, 刁宏伟, 戴松涛, 向贤碧, 常秀兰, 徐艳月, 胡志华, 郝会颖, 孔光临. 等离子体增强化学气相沉积法实现硅纳米线掺硼. 物理学报, doi: 10.7498/aps.53.4410
    [17] 杨恢东, 吴春亚, 赵 颖, 薛俊明, 耿新华, 熊绍珍. 甚高频等离子体增强化学气相沉积法沉积μc-Si∶H薄膜中氧污染的初步研究. 物理学报, doi: 10.7498/aps.52.2865
    [18] 于 威, 刘丽辉, 侯海虹, 丁学成, 韩 理, 傅广生. 螺旋波等离子体增强化学气相沉积氮化硅薄膜. 物理学报, doi: 10.7498/aps.52.687
    [19] 叶超, 宁兆元, 程珊华, 康健. 微波电子回旋共振等离子体增强化学气相沉积法沉积氟化非晶碳薄膜的研究. 物理学报, doi: 10.7498/aps.50.784
    [20] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, doi: 10.7498/aps.50.566
计量
  • 文章访问数:  184
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-09-09
  • 修回日期:  2025-10-29
  • 上网日期:  2025-10-31

/

返回文章
返回