搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

第一性原理研究缺陷石墨烯负载Sm单原子催化剂对Li2O2分子氧化反应的催化机理

肖羽 柯强 雷雪玲

引用本文:
Citation:

第一性原理研究缺陷石墨烯负载Sm单原子催化剂对Li2O2分子氧化反应的催化机理

肖羽, 柯强, 雷雪玲

Unveiling the catalytic mechanism of defect graphene supported Sm single-atom catalyst on Li₂O₂ oxygen evolution reaction: First-principles study

Xiao Yu, Ke Qiang, Lei Xue-Ling
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 锂-氧电池虽有超高的理论能量密度,但实际应用仍面临氧化反应动力学缓慢、充电过电位高等严峻问题。大多数应用于锂-氧电池的单原子催化剂主要是基于过渡金属不饱和配位的d轨道,而稀土元素Sm有丰富的4f轨道电子。最近研究表明Sm单原子催化剂在锂-硫电池中能提升多硫化物的转化,并在全电池实验中实现超稳定的循环性能。因此,本研究设计并优化了17种Sm单原子催化剂SmNxCy (x+y = 4, 6),通过稳定性和催化活性筛选出SmN3C3-1催化剂应用于锂-氧电池。通过研究对Li2O2分子的催化氧化,发现Li2O2分子氧化的速率决定步为第二步,充电过电位为0.52 V。机理分析表明SmN3C3-1催化剂的d-f-p轨道杂化消除了对Sm原子4f轨道的屏蔽,促进了界面电荷转移,从而增强了对Li2O2分子的催化氧化。本工作为稀土单原子催化剂在锂-氧电池中的应用提供了新视角。
    Lithium-oxygen batteries (LOBs) are renowned for their ultrahigh theoretical energy density. However, their practical applications are significantly limited by sluggish oxidation kinetics and elevated charge overpotentials. Most single-atom catalysts (SACs) utilized in LOBs are predominantly based on transition metals, which feature unsaturated d-orbital coordination. In contrast, the rare-earth element samarium (Sm) possesses a rich array of 4f-orbital electrons. Recent studies have demonstrated that Sm SACs can effectively enhance the conversion of polysulfides in lithium-sulfur batteries (LSBs) and achieve remarkable cycling stability in full-cell experiments. Inspired by the work, we systematically designed and optimized 17 configurations of Sm SACs for LOBs using first-principles calculations, denoted as SmNxCy (x + y = 4 or 6). Through comprehensive screening for stability and catalytic activity, we identified the SmN3C3-1 catalyst as the optimal candidate for LOBs. The catalytic mechanism of the SmN3C3-1 SAC on the oxygen evolution reaction of the Li2O2 molecule has been investigated. The Gibbs free energy of the two-electron dissociation process indicates that the second step of the reaction is the rate-determining step (RDS). At the equilibrium potential, the charge overpotential is 0.52 V. Furthermore, mechanistic analysis reveals that the d-f-p orbital hybridization in SmN3C3-1 effectively mitigates the shielding effect on the Sm 4f orbitals, facilitates interfacial charge transfer, and significantly enhances the catalytic performance of the Li2O2 oxidation. This study provides novel insights into the potential of rare-earth-based SACs for improving the performance of LOBs.
  • [1]

    Kang J H, Lee J, Jung J W, Park J, Jang T, Kim H S, Nam J S, Lim H, Yoon K R, Ryu W H, Kim I D, Byon H R 2020 ACS Nano 14 14549

    [2]

    Chen K, Yang D Y, Huang G, Zhang X B 2021 Acc. Chem. Res. 54 632

    [3]

    Jenkins M, Dewar D, Lagnoni M, Yang S, Rees G J, Bertei A, Johnson L R, Gao X, Bruce P G 2024 Adv. Mater. 36 2405715

    [4]

    Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J G, Wang Y, Liu J 2012 Adv. Funct. Mater. 23 987

    [5]

    Geng D, Ding N, Hor T S A, Chien S W, Liu Z, Wuu D, Sun X, Zong Y 2016 Adv. Energy Mater. 6 1502164

    [6]

    Guo X, Sun B, Su D, Liu X, Liu H, Wang Y, Wang G 2017 Sci. Bull. 62 442

    [7]

    Wang C, Xie Z, Zhou Z 2019 APL Mater. 7 040701

    [8]

    Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I, Du W, Hou C 2022 Adv. Compos. Hybrid Mater. 5 606

    [9]

    Liu Z, Zhao Z, Zhang W, Huang Y, Liu Y, Wu D, Wang L, Chou S 2021 InfoMat 4 e12260

    [10]

    Kavakli C, Meini S, Harzer G, Tsiouvaras N, Piana M, Siebel A, Garsuch A, Gasteiger H A, Herranz J 2013 ChemCatChem 5 3358

    [11]

    Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Jung S K, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2013 Energy Environ. Sci. 6 3570

    [12]

    Higgins D, Zamani P, Yu A, Chen Z 2016 Energy Environ. Sci. 9 357

    [13]

    Zhang B, Li C, Yang G, Huang K, Wu J, Li Z, Cao X, Peng D, Hao S, Huang Y 2018 ACS Appl. Mater. Interfaces 10 23807

    [14]

    Al-Naggar A H, Shinde N M, Kim J S, Mane R S 2023 Coord. Chem. Rev. 474 214864

    [15]

    Rahmati M, Huang B, Schofield L M, Fletcher T H, Woodfield B F, Hecker W C, Bartholomew C H, Argyle M D 2018 J. Catal. 362 118

    [16]

    Pandey S, Karakoti M, Bhardwaj D, Tatrari G, Sharma R, Pandey L, Lee M J, Sahoo N G 2023 Nanoscale Adv. 5 1492

    [17]

    Cheng N, Zhang L, Doyle-Davis K, Sun X 2019 Electrochem. Energy Rev. 2 539

    [18]

    Shi C, Fu D, Wang J, Wu X L, Chen J 2021 Sci. Sin. Chim 51 1104

    [19]

    Pan C, El-khodary S, Wang S, Ling Q, Hu X, Xu L, Zhong S 2023 Fuel Process. Technol. 250 107879

    [20]

    Yang Q, Jiang Y, Zhuo H, Mitchell E M, Yu Q 2023 Nano Energy 111 108404

    [21]

    Chang B, Wu S, Wang Y, Sun T, Cheng Z 2022 Nanoscale Horiz. 7 1340

    [22]

    Lu S, Chavan S M, Yu Z 2024 J. CO2 Util. 80 102690

    [23]

    Qiao B, Lin J, Wang A, Chen Y, Zhang T, Liu J 2015 Chin. J. Catal. 36 1505

    [24]

    Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis M N, Li R, Ye S, Knights S, Botton G A, Sham T K, Sun X 2013 Sci. Rep. 3 1775

    [25]

    Han Z, Zhao S, Xiao J, Zhong X, Sheng J, Lv W, Zhang Q, Zhou G, Cheng H M 2021 Adv. Mater. 33 e2105947

    [26]

    Zhou J, Liu X, Zhu L, Zhou J, Guan Y, Chen L, Niu S, Cai J, Sun D, Zhu Y, Du J, Wang G, Qian Y 2018 Joule 2 2681

    [27]

    Chen L, Ke Q, Lei X 2025 J. Energy Storage 111 115433

    [28]

    Guo J, Du Y, Zhang H 2020 Acta Chim. Sin. 78 625

    [29]

    Chai S S, Zhang W B, Yang J L, Zhang L, Theint M M, Zhang X L, Guo S B, Zhou X, Ma X J 2023 RSC Sustain. 1 38

    [30]

    Li M, Wang X, Liu K, Sun H, Sun D, Huang K, Tang Y, Xing W, Li H, Fu G 2023 Adv. Mater. 35 2302462

    [31]

    Wang X, Zhu Y, Li H, Lee J M, Tang Y, Fu G 2022 Small Methods 6 2200413

    [32]

    Wang X, Wang J, Wang P, Li L, Zhang X, Sun D, Li Y, Tang Y, Wang Y, Fu G 2022 Adv. Mater. 34 2206540

    [33]

    Zhou R, Ren Y, Li W, Guo M, Wang Y, Chang H, Zhao X, Hu W, Zhou G, Gu S 2024 Angew. Chem. Int. Ed 63 e202405417

    [34]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [35]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [36]

    Blöchl P E 1994 Phys. Rev. B 50 17953

    [37]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [38]

    Froyen S 1989 Phys. Rev. B 39 3168

    [39]

    Grimme S 2006 J. Comput. Chem. 27 1787

    [40]

    Guo X, Gu J, Lin S, Zhang S, Chen Z, Huang S 2020 J. Am. Chem. Soc. 142 5709

    [41]

    Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033

    [42]

    Li H, Chuai M, Xiao X, Jia Y, Chen B, Li C, Piao Z, Lao Z, Zhang M, Gao R, Zhang B, Han Z, Yang J, Zhou G 2023 J. Am. Chem. Soc. 145 22516

    [43]

    Hu X, Luo G, Zhao Q, Wu D, Yang T, Wen J, Wang R, Xu C, Hu N 2020 J. Am. Chem. Soc. 142 16776

    [44]

    Laoire C, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M 2011 J. Electrochem. Soc. 158 A302

  • [1] 李祗烁, 曹欣睿, 吴顺情, 吴建洋, 文玉华, 朱梓忠. 单层Janus MoSSe在不同手性角单轴拉伸应变下力学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250437
    [2] 黄俊刚, 方艺梅, 江银河, 郑凯, 陈凯轩, 程梅娟, 林秋宝. 硫掺杂氧化锌纳米线电子性质和光学性质的第一性原理研究. 物理学报, doi: 10.7498/aps.74.20250495
    [3] 雷雪玲, 朱巨湧, 柯强, 欧阳楚英. 第一性原理研究硼掺杂氧化石墨烯对过氧化锂氧化反应的催化机理. 物理学报, doi: 10.7498/aps.73.20240197
    [4] 史晓红, 侯滨朋, 李祗烁, 陈京金, 师小文, 朱梓忠. 锂离子电池富锂锰基三元材料中氧空位簇的形成: 第一原理计算. 物理学报, doi: 10.7498/aps.72.20222300
    [5] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, doi: 10.7498/aps.72.20221544
    [6] 杨海林, 陈琦丽, 顾星, 林宁. 氧原子在氟化石墨烯上扩散的第一性原理计算. 物理学报, doi: 10.7498/aps.72.20221630
    [7] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理. 物理学报, doi: 10.7498/aps.71.20211631
    [8] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.70.20211631
    [9] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, doi: 10.7498/aps.70.20201636
    [10] 栾丽君, 何易, 王涛, LiuZong-Wen. CdS/CdMnTe太阳能电池异质结界面与光电性能的第一性原理计算. 物理学报, doi: 10.7498/aps.70.20210268
    [11] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190503
    [12] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, doi: 10.7498/aps.68.20190509
    [13] 刘琪, 管鹏飞. La65X35(X=Ni,Al)非晶合金原子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.67.20180992
    [14] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, doi: 10.7498/aps.62.056105
    [15] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, doi: 10.7498/aps.62.246301
    [16] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, doi: 10.7498/aps.62.083102
    [17] 汪志刚, 张杨, 文玉华, 朱梓忠. ZnO原子链的结构稳定性和电子性质的第一性原理研究. 物理学报, doi: 10.7498/aps.59.2051
    [18] 吕泉, 黄伟其, 王晓允, 孟祥翔. Si(111)面上氮原子薄膜的电子态密度第一性原理计算及分析. 物理学报, doi: 10.7498/aps.59.7880
    [19] 侯清玉, 张 跃, 陈 粤, 尚家香, 谷景华. 锐钛矿(TiO2)半导体的氧空位浓度对导电性能影响的第一性原理计算. 物理学报, doi: 10.7498/aps.57.438
    [20] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律. 物理学报, doi: 10.7498/aps.56.6722
计量
  • 文章访问数:  21
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-10-15

/

返回文章
返回