-
锂-氧电池虽有超高的理论能量密度,但实际应用仍面临氧化反应动力学缓慢、充电过电位高等严峻问题。大多数应用于锂-氧电池的单原子催化剂主要是基于过渡金属不饱和配位的d轨道,而稀土元素Sm有丰富的4f轨道电子。最近研究表明Sm单原子催化剂在锂-硫电池中能提升多硫化物的转化,并在全电池实验中实现超稳定的循环性能。因此,本研究设计并优化了17种Sm单原子催化剂SmNxCy (x+y = 4, 6),通过稳定性和催化活性筛选出SmN3C3-1催化剂应用于锂-氧电池。通过研究对Li2O2分子的催化氧化,发现Li2O2分子氧化的速率决定步为第二步,充电过电位为0.52 V。机理分析表明SmN3C3-1催化剂的d-f-p轨道杂化消除了对Sm原子4f轨道的屏蔽,促进了界面电荷转移,从而增强了对Li2O2分子的催化氧化。本工作为稀土单原子催化剂在锂-氧电池中的应用提供了新视角。Lithium-oxygen batteries (LOBs) are renowned for their ultrahigh theoretical energy density. However, their practical applications are significantly limited by sluggish oxidation kinetics and elevated charge overpotentials. Most single-atom catalysts (SACs) utilized in LOBs are predominantly based on transition metals, which feature unsaturated d-orbital coordination. In contrast, the rare-earth element samarium (Sm) possesses a rich array of 4f-orbital electrons. Recent studies have demonstrated that Sm SACs can effectively enhance the conversion of polysulfides in lithium-sulfur batteries (LSBs) and achieve remarkable cycling stability in full-cell experiments. Inspired by the work, we systematically designed and optimized 17 configurations of Sm SACs for LOBs using first-principles calculations, denoted as SmNxCy (x + y = 4 or 6). Through comprehensive screening for stability and catalytic activity, we identified the SmN3C3-1 catalyst as the optimal candidate for LOBs. The catalytic mechanism of the SmN3C3-1 SAC on the oxygen evolution reaction of the Li2O2 molecule has been investigated. The Gibbs free energy of the two-electron dissociation process indicates that the second step of the reaction is the rate-determining step (RDS). At the equilibrium potential, the charge overpotential is 0.52 V. Furthermore, mechanistic analysis reveals that the d-f-p orbital hybridization in SmN3C3-1 effectively mitigates the shielding effect on the Sm 4f orbitals, facilitates interfacial charge transfer, and significantly enhances the catalytic performance of the Li2O2 oxidation. This study provides novel insights into the potential of rare-earth-based SACs for improving the performance of LOBs.
-
Keywords:
- lithium-oxygen batteries /
- oxygen evolution reaction /
- Sm single-atom catalyst /
- first-principles calculations
-
[1] Kang J H, Lee J, Jung J W, Park J, Jang T, Kim H S, Nam J S, Lim H, Yoon K R, Ryu W H, Kim I D, Byon H R 2020 ACS Nano 14 14549
[2] Chen K, Yang D Y, Huang G, Zhang X B 2021 Acc. Chem. Res. 54 632
[3] Jenkins M, Dewar D, Lagnoni M, Yang S, Rees G J, Bertei A, Johnson L R, Gao X, Bruce P G 2024 Adv. Mater. 36 2405715
[4] Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang J G, Wang Y, Liu J 2012 Adv. Funct. Mater. 23 987
[5] Geng D, Ding N, Hor T S A, Chien S W, Liu Z, Wuu D, Sun X, Zong Y 2016 Adv. Energy Mater. 6 1502164
[6] Guo X, Sun B, Su D, Liu X, Liu H, Wang Y, Wang G 2017 Sci. Bull. 62 442
[7] Wang C, Xie Z, Zhou Z 2019 APL Mater. 7 040701
[8] Dang C, Mu Q, Xie X, Sun X, Yang X, Zhang Y, Maganti S, Huang M, Jiang Q, Seok I, Du W, Hou C 2022 Adv. Compos. Hybrid Mater. 5 606
[9] Liu Z, Zhao Z, Zhang W, Huang Y, Liu Y, Wu D, Wang L, Chou S 2021 InfoMat 4 e12260
[10] Kavakli C, Meini S, Harzer G, Tsiouvaras N, Piana M, Siebel A, Garsuch A, Gasteiger H A, Herranz J 2013 ChemCatChem 5 3358
[11] Lim H D, Song H, Gwon H, Park K Y, Kim J, Bae Y, Kim H, Jung S K, Kim T, Kim Y H, Lepró X, Ovalle-Robles R, Baughman R H, Kang K 2013 Energy Environ. Sci. 6 3570
[12] Higgins D, Zamani P, Yu A, Chen Z 2016 Energy Environ. Sci. 9 357
[13] Zhang B, Li C, Yang G, Huang K, Wu J, Li Z, Cao X, Peng D, Hao S, Huang Y 2018 ACS Appl. Mater. Interfaces 10 23807
[14] Al-Naggar A H, Shinde N M, Kim J S, Mane R S 2023 Coord. Chem. Rev. 474 214864
[15] Rahmati M, Huang B, Schofield L M, Fletcher T H, Woodfield B F, Hecker W C, Bartholomew C H, Argyle M D 2018 J. Catal. 362 118
[16] Pandey S, Karakoti M, Bhardwaj D, Tatrari G, Sharma R, Pandey L, Lee M J, Sahoo N G 2023 Nanoscale Adv. 5 1492
[17] Cheng N, Zhang L, Doyle-Davis K, Sun X 2019 Electrochem. Energy Rev. 2 539
[18] Shi C, Fu D, Wang J, Wu X L, Chen J 2021 Sci. Sin. Chim 51 1104
[19] Pan C, El-khodary S, Wang S, Ling Q, Hu X, Xu L, Zhong S 2023 Fuel Process. Technol. 250 107879
[20] Yang Q, Jiang Y, Zhuo H, Mitchell E M, Yu Q 2023 Nano Energy 111 108404
[21] Chang B, Wu S, Wang Y, Sun T, Cheng Z 2022 Nanoscale Horiz. 7 1340
[22] Lu S, Chavan S M, Yu Z 2024 J. CO2 Util. 80 102690
[23] Qiao B, Lin J, Wang A, Chen Y, Zhang T, Liu J 2015 Chin. J. Catal. 36 1505
[24] Sun S, Zhang G, Gauquelin N, Chen N, Zhou J, Yang S, Chen W, Meng X, Geng D, Banis M N, Li R, Ye S, Knights S, Botton G A, Sham T K, Sun X 2013 Sci. Rep. 3 1775
[25] Han Z, Zhao S, Xiao J, Zhong X, Sheng J, Lv W, Zhang Q, Zhou G, Cheng H M 2021 Adv. Mater. 33 e2105947
[26] Zhou J, Liu X, Zhu L, Zhou J, Guan Y, Chen L, Niu S, Cai J, Sun D, Zhu Y, Du J, Wang G, Qian Y 2018 Joule 2 2681
[27] Chen L, Ke Q, Lei X 2025 J. Energy Storage 111 115433
[28] Guo J, Du Y, Zhang H 2020 Acta Chim. Sin. 78 625
[29] Chai S S, Zhang W B, Yang J L, Zhang L, Theint M M, Zhang X L, Guo S B, Zhou X, Ma X J 2023 RSC Sustain. 1 38
[30] Li M, Wang X, Liu K, Sun H, Sun D, Huang K, Tang Y, Xing W, Li H, Fu G 2023 Adv. Mater. 35 2302462
[31] Wang X, Zhu Y, Li H, Lee J M, Tang Y, Fu G 2022 Small Methods 6 2200413
[32] Wang X, Wang J, Wang P, Li L, Zhang X, Sun D, Li Y, Tang Y, Wang Y, Fu G 2022 Adv. Mater. 34 2206540
[33] Zhou R, Ren Y, Li W, Guo M, Wang Y, Chang H, Zhao X, Hu W, Zhou G, Gu S 2024 Angew. Chem. Int. Ed 63 e202405417
[34] Kresse G, Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Froyen S 1989 Phys. Rev. B 39 3168
[39] Grimme S 2006 J. Comput. Chem. 27 1787
[40] Guo X, Gu J, Lin S, Zhang S, Chen Z, Huang S 2020 J. Am. Chem. Soc. 142 5709
[41] Wang V, Xu N, Liu J C, Tang G, Geng W T 2021 Comput. Phys. Commun. 267 108033
[42] Li H, Chuai M, Xiao X, Jia Y, Chen B, Li C, Piao Z, Lao Z, Zhang M, Gao R, Zhang B, Han Z, Yang J, Zhou G 2023 J. Am. Chem. Soc. 145 22516
[43] Hu X, Luo G, Zhao Q, Wu D, Yang T, Wen J, Wang R, Xu C, Hu N 2020 J. Am. Chem. Soc. 142 16776
[44] Laoire C, Mukerjee S, Plichta E J, Hendrickson M A, Abraham K M 2011 J. Electrochem. Soc. 158 A302
计量
- 文章访问数: 21
- PDF下载量: 0
- 被引次数: 0