Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Enhanced photonic spin Hall effect due to controllable permittivity of alloy film

Wan Ting Luo Zhao-Ming Min Li Chen Min Xiao Lei

Citation:

Enhanced photonic spin Hall effect due to controllable permittivity of alloy film

Wan Ting, Luo Zhao-Ming, Min Li, Chen Min, Xiao Lei
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Photonic spin Hall effect (SHE) is an interesting transport phenomenon, and has attracted growing attention. The spin-dependent splitting of photonic SHE as a weak effect is just tens of nanometers so that it can usually be detected indirectly with the weak measurement techniques. To detect it directly and use it properly, many efforts have been devoted to enhancing the photonic SHE. Recently, the surface plasmon resonance (SPR) excited by a pure nanometal structure is used to enhance the photonic SHE. However, the pure metal permittivities are limited, therefore the regulation of the photonic SHE is also restricted. It is worth mentioning that the alloy made from the pure metal with different composition proportions can achieve the artificial control of permittivity. More importantly, the alloy can also be used to manipulate the SPR. In this paper, we systematically investigate the photonic SHE in a nanoalloy structure composed of BK7 glass, alloy film and air in order to realize the enhancement of photonic SHE. First of all, the resonant angle of SPR varying with the permittivity of alloy is studied by using the angular spectrum theory of beam. It is found that the resonant angle of the SPR is mainly influenced by the real part of the permittivity of alloy, while the imaginary part has little influence on it. The resonant angle of SPR will increase with the increase of the real part of the permittivity. Secondly, the spin-dependent splitting is studied by changing the alloy permittivity when the incident angle is set to be a resonant angle. We find that the distribution of the larger spin-dependent splitting at the resonant angle is zonal. The optimal permittivity of alloy film is ε2=-2.8 + 1.6i, and the alloy can be composed of Ag and Ni according to the Bruggerman theory. Under the condition of the optimal permittivity, the spin-dependent splitting reaches about 1.2×105 nm at a resonant angle of 51.5°, which is about 40 times larger than the previous result in a pure nanometal structure. Finally, when the incident angle is fixed at 44.1°, it is revealed that the spin-dependent splitting varying with the permittivity is axially symmetric and spherical radiation is centered at a maximum value. The farther away from the center, the smaller the corresponding beam shift is. The alloy permittivity in the spherical radiation center is ε2=-10.6 + 1.2i, which can be composed of Au and Ag. The value of spin-dependent splitting reaches about 8000 nm, which is greatly improved when compared with the previous maximum value 3000 nm in a pure nanometal structure. These findings can effectively enhance the photonic SHE and provide theoretical basis for the research and development of nanophotonic devices such as the SPR-based sensor.
      Corresponding author: Luo Zhao-Ming, zhaomingluo@hnu.edu.cn
    • Funds: Project supported by the Scientific Research Youth Project of Hunan Provincial Education Department, China (Grant No. 17B114), the National Natural Science Foundation of China (Grant No. 11647110), the Natural Science Foundation of Hunan Province, China (Grant Nos. 2017JJ3098, 2016JJ2064), and the Science and Technology Program of Hunan Province, China (Grant No. 2016TP1021).
    [1]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901

    [2]

    Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903

    [3]

    Hermosa N, Nugrowati A M, Aiello A, Woerdman J P 2011 Opt. Lett. 36 3200

    [4]

    Gorodetski Y, Bliokh K Y, Stein B, Genet C, Shitrit N, Kleiner V, Hasman E, Ebbesen T W 2012 Phys. Rev. Lett. 109 013901

    [5]

    Ling X H, Zhou X X, Huang K, Liu Y C, Qiu C W, Luo H L, Wen S C 2017 Rep. Prog. Phys. 80 066401

    [6]

    Gosselin P, Bérard A, Mohrbach H 2007 Phys. Rev. D 75 084035

    [7]

    Dartora C A, Cabrera G G, Nobrega K Z, Montagner V F, Matielli M H K, de Campos F K R, Filho H T S 2011 Phys. Rev. A 83 012110

    [8]

    Ménard J M, Mattacchione A E, van Driel H M, Hautmann C, Betz M 2010 Phys. Rev. B 82 045303

    [9]

    Alizadeh M H, Reinhard B M 2016 Opt. Express 24 8471

    [10]

    Lee Y U, Wu J W 2015 Sci. Rep. 5 13900

    [11]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

    [12]

    Chen M, Luo Z M, Wan T, Liu J 2017 Acta Opt. Sin. 37 0226002 (in Chinese) [陈敏, 罗朝明, 万婷, 刘靖 2017 光学学报 37 0226002]

    [13]

    Liu Y C, Ke Y G, Luo H L, Wen S C 2017 Nanophotonics 6 51

    [14]

    Luo Z M, Chen S Z, Ling X H, Zhang J, Luo H L 2014 Acta Phys. Sin. 63 154203 (in Chinese) [罗朝明, 陈世祯, 凌晓辉, 张进, 罗海陆 2014 物理学报 63 154203]

    [15]

    Qin Y, Li Y, He H Y, Gong Q H 2009 Opt. Lett. 34 2551

    [16]

    Neugebauer M, Grosche S, Rothau S, Leuchs G, Banzer P 2016 Opt. Lett. 41 3499

    [17]

    Hosten O, Kwiat P 2008 Science 319 787

    [18]

    Luo H L, Zhou X X, Shu W X, Wen S C, Fan D Y 2011 Phys. Rev. A 84 043806

    [19]

    Qiu X D, Zhang Z Y, Xie L G, Qiu J D, Gao F H, Du J L 2015 Opt. Lett. 40 1018

    [20]

    Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C, Fan D Y 2011 Phys. Rev. A 84 033801

    [21]

    Wang B, Li Y, Pan M M, Ren J L, Xiao Y F, Yang H, Gong Q H 2013 Phys. Rev. A 88 043842

    [22]

    Tang T T, Li C Y, Luo L 2016 Sci. Rep. 6 30762

    [23]

    Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y 2015 Light Sci. Appl. 4 e290

    [24]

    Zhou X X, Xiao Z C, Luo H L, Wen S C 2012 Phys. Rev. A 85 043809

    [25]

    Zhou X X, Ling X H 2016 IEEE Photon. J. 8 4801108

    [26]

    Yang G, Fu X J, Zhou J 2013 J. Opt. Soc. Am. B 30 282

    [27]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [28]

    Born M, Wolf E 1999 Principles of Optics (Cambridge:Cambridge University Press) pp38-44

    [29]

    Salasnich L 2012 Phys. Rev. A 86 055801

    [30]

    Berthault A, Rousselle D, Zerah G 1992 J. Magn. Magn. Mater. 112 477

    [31]

    Jiang J J, Li D, Geng D Y, An J, He J, Liu W, Zhang Z D 2014 Nanoscale 6 3967

    [32]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nat. Photon. 2 748

  • [1]

    Onoda M, Murakami S, Nagaosa N 2004 Phys. Rev. Lett. 93 083901

    [2]

    Bliokh K Y, Bliokh Y P 2006 Phys. Rev. Lett. 96 073903

    [3]

    Hermosa N, Nugrowati A M, Aiello A, Woerdman J P 2011 Opt. Lett. 36 3200

    [4]

    Gorodetski Y, Bliokh K Y, Stein B, Genet C, Shitrit N, Kleiner V, Hasman E, Ebbesen T W 2012 Phys. Rev. Lett. 109 013901

    [5]

    Ling X H, Zhou X X, Huang K, Liu Y C, Qiu C W, Luo H L, Wen S C 2017 Rep. Prog. Phys. 80 066401

    [6]

    Gosselin P, Bérard A, Mohrbach H 2007 Phys. Rev. D 75 084035

    [7]

    Dartora C A, Cabrera G G, Nobrega K Z, Montagner V F, Matielli M H K, de Campos F K R, Filho H T S 2011 Phys. Rev. A 83 012110

    [8]

    Ménard J M, Mattacchione A E, van Driel H M, Hautmann C, Betz M 2010 Phys. Rev. B 82 045303

    [9]

    Alizadeh M H, Reinhard B M 2016 Opt. Express 24 8471

    [10]

    Lee Y U, Wu J W 2015 Sci. Rep. 5 13900

    [11]

    Yi X N, Li Y, Liu Y C, Ling X H, Zhang Z Y, Luo H L 2014 Acta Phys. Sin. 63 094203 (in Chinese) [易煦农, 李瑛, 刘亚超, 凌晓辉, 张志友, 罗海陆 2014 物理学报 63 094203]

    [12]

    Chen M, Luo Z M, Wan T, Liu J 2017 Acta Opt. Sin. 37 0226002 (in Chinese) [陈敏, 罗朝明, 万婷, 刘靖 2017 光学学报 37 0226002]

    [13]

    Liu Y C, Ke Y G, Luo H L, Wen S C 2017 Nanophotonics 6 51

    [14]

    Luo Z M, Chen S Z, Ling X H, Zhang J, Luo H L 2014 Acta Phys. Sin. 63 154203 (in Chinese) [罗朝明, 陈世祯, 凌晓辉, 张进, 罗海陆 2014 物理学报 63 154203]

    [15]

    Qin Y, Li Y, He H Y, Gong Q H 2009 Opt. Lett. 34 2551

    [16]

    Neugebauer M, Grosche S, Rothau S, Leuchs G, Banzer P 2016 Opt. Lett. 41 3499

    [17]

    Hosten O, Kwiat P 2008 Science 319 787

    [18]

    Luo H L, Zhou X X, Shu W X, Wen S C, Fan D Y 2011 Phys. Rev. A 84 043806

    [19]

    Qiu X D, Zhang Z Y, Xie L G, Qiu J D, Gao F H, Du J L 2015 Opt. Lett. 40 1018

    [20]

    Luo H L, Ling X H, Zhou X X, Shu W X, Wen S C, Fan D Y 2011 Phys. Rev. A 84 033801

    [21]

    Wang B, Li Y, Pan M M, Ren J L, Xiao Y F, Yang H, Gong Q H 2013 Phys. Rev. A 88 043842

    [22]

    Tang T T, Li C Y, Luo L 2016 Sci. Rep. 6 30762

    [23]

    Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C, Fan D Y 2015 Light Sci. Appl. 4 e290

    [24]

    Zhou X X, Xiao Z C, Luo H L, Wen S C 2012 Phys. Rev. A 85 043809

    [25]

    Zhou X X, Ling X H 2016 IEEE Photon. J. 8 4801108

    [26]

    Yang G, Fu X J, Zhou J 2013 J. Opt. Soc. Am. B 30 282

    [27]

    Zhang Z, Liu Q, Qi Z M 2013 Acta Phys. Sin. 62 060703 (in Chinese) [张喆, 柳倩, 祁志美 2013 物理学报 62 060703]

    [28]

    Born M, Wolf E 1999 Principles of Optics (Cambridge:Cambridge University Press) pp38-44

    [29]

    Salasnich L 2012 Phys. Rev. A 86 055801

    [30]

    Berthault A, Rousselle D, Zerah G 1992 J. Magn. Magn. Mater. 112 477

    [31]

    Jiang J J, Li D, Geng D Y, An J, He J, Liu W, Zhang Z D 2014 Nanoscale 6 3967

    [32]

    Bliokh K Y, Niv A, Kleiner V, Hasman E 2008 Nat. Photon. 2 748

  • [1] Li Kai, Sun Jie, Du Zai-Fa, Qian Feng-Song, Tang Peng-Hao, Mei Yu, Xu Chen, Yan Qun, Liu Ming, Li Long-Fei, Guo Wei-Ling. Metal thermopile infrared detector with vertical graphene. Acta Physica Sinica, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [2] Li Qian-Yang, Yuan Shuai-Jie, Yang Jin, Wang Yong, Ma Zu-Hai, Chen Yu, Zhou Xin-Xing. Giant and controllable in-plane spin angular shifts in bulk and ultrathin magnetic materials. Acta Physica Sinica, 2023, 72(1): 014201. doi: 10.7498/aps.72.20221643
    [3] Jing Jian-Ying, Liu Kun, Wu Zhang-Yi, Liu Yue-Meng, Jiang Jun-Feng, Xu Tian-Hua, Yan Wei-Cheng, Xiong Yi-Yang, Zhan Xiao-Han, Xiao Lu, Liu Jin-Chang, Liu Tie-Gen. Violet phosphorus-enhanced plug-and-play double-lane fiber optic surface plasmon resonance refractometer. Acta Physica Sinica, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [4] Ye Gao-Jie, Yin Cheng, Li Si-Yu, Yu Qiang, Wang Xian-Ping, Wu Jian. Surface lattice resonance effect of double-ring array of metallic nano-particles. Acta Physica Sinica, 2023, 72(10): 104201. doi: 10.7498/aps.72.20230199
    [5] Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Physica Sinica, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [6] Li Qian-Yang,  Yuan Shuai-Jie,  Yang Jin,  Wang Yong,  Ma Zu-Hai,  Chen Yu,  Zhou Xin-Xing. Giant and controllable in-plane spin angular shifts in bulk and ultrathin magnetic materials. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20221643
    [7] Guo Qi-Qi, Chen Yi-Hang. Enhanced nonlinear optical effects based on strong coupling between epsilon-near-zero mode and gap surface plasmons. Acta Physica Sinica, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [8] Li Jian-Kang, Li Rui. Numerical simulation study of surface enhancement coherent anti-Stokes Raman scattering reinforced substrate. Acta Physica Sinica, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [9] Xie Zhi-Qiang, He Yan-Liang, Wang Pei-Pei, Su Ming-Yang, Chen Xue-Yu, Yang Bo, Liu Jun-Min, Zhou Xin-Xing, Li Ying, Chen Shu-Qing, Fan Dian-Yuan. Two-dimensional optical edge detection based on Pancharatnam-Berry phase metasurface. Acta Physica Sinica, 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [10] Wang Shan-Jiang, Su Dan, Zhang Tong. Research progress of surface plasmons mediated photothermal effects. Acta Physica Sinica, 2019, 68(14): 144401. doi: 10.7498/aps.68.20190476
    [11] Liu Jin-An, Tu Jia-Long, Lu Zhi-Li, Wu Bai-Wei, Hu Qi, Ma Hong-Hua, Chen Huan, Yi Xu-Nong. Manipulating longitudinal photonic spin Hall effect based on dynamic and Pancharatnam-Berry phase. Acta Physica Sinica, 2019, 68(6): 064201. doi: 10.7498/aps.68.20182004
    [12] Zhu Xu-Peng, Shi Hui-Min, Zhang Shi, Chen Zhi-Quan, Zheng Meng-Jie, Wang Ya-Si, Xue Shu-Wen, Zhang Jun, Duan Hui-Gao. Review on surface plasmonic coupling systems and their applications in spectra enhancement. Acta Physica Sinica, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [13] Feng Shi-Liang, Wang Jing-Yu, Chen Shu, Meng Ling-Yan, Shen Shao-Xin, Yang Zhi-Lin. Surface plasmon resonance “hot spots” and near-field enhanced spectroscopy at interfaces. Acta Physica Sinica, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [14] Wang Dong, Xu Jun, Chen Yi-Hang. Broadband absorption caused by coupling of epsilon-near-zero mode with plasmon mode. Acta Physica Sinica, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [15] Jiang Hang, Zhou Yu-Rong, Liu Feng-Zhen, Zhou Yu-Qin. Effect of annealing treatment on characteristics of surface plasmon resonance for indium tin oxide. Acta Physica Sinica, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [16] Huang Zhi-Fang, Ni Ya-Xian, Sun Hua. Localized surface plasmon resonance and the size effects of magneto-optic rods. Acta Physica Sinica, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [17] Huang Yun-Huan, Li Pu. Extinction properties of gold nanorod complexes. Acta Physica Sinica, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [18] Wang Li-Cen, Qiu Xiao-Dong, Zhang Zhi-You, Shi Rui-Ying. Photon spin splitting in magneto-optic Kerr effect. Acta Physica Sinica, 2015, 64(17): 174202. doi: 10.7498/aps.64.174202
    [19] Wang Yue, Liu Li-Wei, Hu Si-Yi, Li Qi-Yang, Sun Zhen-Hao, Miao Xin-Hui, Yang Xiao-Chuan, Zhang Xi-He. Simulation study based on the COMSOL Mutiphysics to the surface plasmon resonance of Cu2S quantum dots. Acta Physica Sinica, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [20] Yang Zhen-Ling, Liu Yu-Qiang, Yang Yan-Qiang. ExtendedQ-band fluorescence lifetime of Tetraphenyl porphyrins adsorbed on silver nanoparticles. Acta Physica Sinica, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
Metrics
  • Abstract views:  7425
  • PDF Downloads:  206
  • Cited By: 0
Publishing process
  • Received Date:  12 August 2017
  • Accepted Date:  20 November 2017
  • Published Online:  20 March 2019

/

返回文章
返回