Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device

Hou Zhi-Peng Ding Bei Li Hang Xu Gui-Zhou Wang Wen-Hong Wu Guang-Heng

Citation:

Observation of new-type magnetic skymrions with extremerely high temperature stability and fabrication of skyrmion-based race-track memory device

Hou Zhi-Peng, Ding Bei, Li Hang, Xu Gui-Zhou, Wang Wen-Hong, Wu Guang-Heng
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Nanoscle magnetic skyrmions are topologically protected vortex-like spin textures that have been regarded as a promising candidate for the transport of information in further spintronic applications based on the racetrack memory concept due to their nanoscale dimension, stable particle-like feature, and an ultralow threshold for current-driven motion. Recently, most of the skyrmions are observed in chiral magnetic materials, such as MnSi, FeGe, Co-Mn-Zn, where the Dzyaloshinskii-Moriya interaction is active. However, their overall low thermal stability is one of the major factors hindering the practical applications. In this paper, we report the observation of a new-type magnetic skyrmion with extremerely high temperature stability in the centrosymmetric frustrated magnet Fe3Sn2, and the fabrication of skyrmion-based race-track memory device based on Fe3Sn2 by using focused ion beam. This compound is a rare example of ferromagnetic frustrated magnet that exhibits a high Curie temperature Tc up to 640 K. As the temperature decreases from 640 K to 100 K, it undergoes a spin reorientation during which the easy axis rotates gradually from the c-axis to the ab-plane. The Fe3Sn2 has a layered rhombohedral structure with the alternate stacking of the Sn layer and the Fe-Sn bilayer along the c-axis. By a high-temperature flux method, we grow high-quality Fe3Sn2 single crystal. The in-situ Lorentz transmission electron microscopy (LTEM) observations demonstrate that this compound can host skyrmions at room temperature (RT). In contrast to the skyrmions of the chiral magnets, they possess various spin textures and are transformed from topologically trivial bubbles under a high external magnetic field of 800 mT. By using the FIB technique, we fabricate a geometrically confined nanostripe with a width of 600 nm and thickness of 250 nm. The in-situ LTEM observations demonstrate that a single chain of skyrmions with uniform spin textures can be created at RT. The investigations on the temperature stability of the single skyrmion chain reveal that it shows an extremerely high temperature stability that the size of and the distance between the skyrmions in the chain can keep unchanged at temperatures varying from RT up to a record-high temperature of 630 K. The observation of a highly stable single skyrmion chain in the geometrically confined Fe3Sn2 nanostripe can be attributed to (1) the weak temperaturedependent magnetic anisotropy Ku of the Fe3Sn2 crystal, and (2) the formation of edge states at the boundaries of the nanostripes. The observation of new-type magnetic skymrion with extremerely high temperature stability and the fabrication of skyrmion-based race-track memory devices are very important steps towards the applications in skyrmionbased spintronic devices.
      Corresponding author: Wang Wen-Hong, wenhong.wang@iphy.ac.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFA0303202), National Natural Science Foundation of China (Grant No. 11604148), and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-SW-M01).
    [1]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [2]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 269

    [3]

    Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202

    [4]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152

    [5]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [6]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [7]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602

    [8]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [9]

    Tonomura A, Yu X Z, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673

    [10]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [11]

    Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203

    [12]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [13]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [14]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403

    [15]

    Lin Y S, Grundy J, Giess E A 1973 Appl. Phys. Lett. 23 485

    [16]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856

    [17]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [18]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [19]

    Wang W H, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X 2016 Adv. Mater. 28 6887

    [20]

    Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141

    [21]

    Jiang W J, Zhao X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162

    [22]

    Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275

    [23]

    Pereiro M, Yudin D, Chico H, Etz C, Eriksson O, Bergman A 2014 Nat. Commun. 5 4815

    [24]

    Car G L, Malaman B, Roques B J 1978 Physica F 8 323

    [25]

    Fenner L A, Dee A A, Wills A S 2009 J. Phys.: Condens. Matter 21 452202

    [26]

    Wang Q, Sun S S, Zhang X, Pang F, Lei H C 2016 Phys. Rev. B 94 075135

    [27]

    Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, Wills A S 2011 J. Phys.: Condens. Matter 23 112205

    [28]

    Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z 2017 Adv. Mater. 29 1701144

    [29]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [30]

    Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H W, Wu G H, Zhang X X, Wang W H 2018 Nano Lett. 18 1274

    [31]

    Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141

    [32]

    Nayak A K, Kumar V, Ma T P, Werner P, Pippel E, Shaoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 566

  • [1]

    Skyrme T H R 1962 Nucl. Phys. 31 556

    [2]

    Yamada K, Kasai S, Nakatani Y, Kobayashi K, Kohno H, Thiaville A, Ono T 2007 Nat. Mater. 6 269

    [3]

    Hertel R, Schneider C M 2006 Phys. Rev. Lett. 97 177202

    [4]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152

    [5]

    Nagaosa N, Tokura Y 2013 Nat. Nanotechnol. 8 899

    [6]

    Mhlbauer S, Binz B, Jonietz F, Pfleiderer C, Rosch A, Neubauer A, Georgii R, Boni P 2009 Science 323 915

    [7]

    Neubauer A, Pfleiderer C, Binz B, Rosch A, Ritz R, Niklowitz P G, Boni P 2009 Phys. Rev. Lett. 102 186602

    [8]

    Pappas C, Lelivre-Berna E, Falus P, Bentley P M, Moskvin E, Grigoriev S, Fouquet P, Farago B 2009 Phys. Rev. Lett. 102 197202

    [9]

    Tonomura A, Yu X Z, Yanagisawa K, Matsuda T, Onose Y, Kanazawa N, Park H S, Tokura Y 2012 Nano Lett. 12 1673

    [10]

    Yu X Z, Kanazawa N, Onose Y, Kimoto K, Zhang W Z, Ishiwata S, Matsui Y, Tokura Y 2011 Nat. Mater. 10 106

    [11]

    Wilhelm H, Baenitz M, Schmidt M, Rler U K, Leonov A A, Bogdanov A N 2011 Phys. Rev. Lett. 107 127203

    [12]

    Seki S, Yu X Z, Ishiwata S, Tokura Y 2012 Science 336 198

    [13]

    Adams T, Chacon A, Wagner M, Bauer A, Brandl G, Pedersen B, Berger H, Lemmens P, Pfleiderer C 2012 Phys. Rev. Lett. 108 237204

    [14]

    Seki S, Ishiwata S, Tokura Y 2012 Phys. Rev. B 86 060403

    [15]

    Lin Y S, Grundy J, Giess E A 1973 Appl. Phys. Lett. 23 485

    [16]

    Yu X Z, Mostovoy M, Tokunaga Y, Zhang W Z, Kimoto K, Matsui Y, Kaneko Y, Nagaosa N, Tokura Y 2012 Proc. Natl. Acad. Sci. USA 109 8856

    [17]

    Yu X Z, Tokunaga Y, Kaneko Y, Zhang W Z, Kimoto K, Matsui Y, Taguchi Y, Tokura Y 2014 Nat. Commun. 5 3198

    [18]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [19]

    Wang W H, Zhang Y, Xu G, Peng L, Ding B, Wang Y, Hou Z, Zhang X, Li X, Liu E, Wang S, Cai J, Wang F, Li J, Hu F, Wu G, Shen B, Zhang X 2016 Adv. Mater. 28 6887

    [20]

    Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141

    [21]

    Jiang W J, Zhao X C, Yu G Q, Zhang W, Wang X, Jungfleisch M B, Pearson J E, Cheng X M, Heinonen O, Wang K L, Zhou Y, Hoffmann A, te Velthuis S G E 2017 Nat. Phys. 13 162

    [22]

    Leonov A O, Mostovoy M 2015 Nat. Commun. 6 8275

    [23]

    Pereiro M, Yudin D, Chico H, Etz C, Eriksson O, Bergman A 2014 Nat. Commun. 5 4815

    [24]

    Car G L, Malaman B, Roques B J 1978 Physica F 8 323

    [25]

    Fenner L A, Dee A A, Wills A S 2009 J. Phys.: Condens. Matter 21 452202

    [26]

    Wang Q, Sun S S, Zhang X, Pang F, Lei H C 2016 Phys. Rev. B 94 075135

    [27]

    Kida T, Fenner L A, Dee A A, Terasaki I, Hagiwara M, Wills A S 2011 J. Phys.: Condens. Matter 23 112205

    [28]

    Hou Z, Ren W, Ding B, Xu G, Wang Y, Yang B, Zhang Y, Liu E, Xu F, Wang W, Wu G, Zhang X, Shen B, Zhang Z 2017 Adv. Mater. 29 1701144

    [29]

    Yu X Z, Tokunaga Y, Taguchi Y, Tokura Y 2017 Adv. Mater. 29 1603958

    [30]

    Hou Z P, Zhang Q, Xu G Z, Gong C, Ding B, Wang Y, Li H, Liu E K, Xu F, Zhang H W, Wu G H, Zhang X X, Wang W H 2018 Nano Lett. 18 1274

    [31]

    Phatak C, Heinonen O, Graef M D, Long A P 2016 Nano Lett. 16 4141

    [32]

    Nayak A K, Kumar V, Ma T P, Werner P, Pippel E, Shaoo R, Damay F, Rler U K, Felser C, Parkin S S P 2017 Nature 548 566

  • [1] Guo Xi, Zuo Ya-Lu, Cui Bao-Shan, Shen Tie-Long, Sheng Yan-Bin, Xi Li. Ion irradiation modulated magnetic properties of materials and its applications. Acta Physica Sinica, 2024, 73(13): 136101. doi: 10.7498/aps.73.20240541
    [2] Wang Ying, Huang Hui-Xiang, Huang Xiang-Lin, Guo Ting-Ting. Resistive switching characteristics of HfOx-based resistance random access memory under photoelectric synergistic regulation. Acta Physica Sinica, 2023, 72(19): 197201. doi: 10.7498/aps.72.20230797
    [3] Liu Yi, Qian Zheng-Hong, Zhu Jian-Guo. Research progress of room temperature magnetic skyrmion and its application. Acta Physica Sinica, 2020, 69(23): 231201. doi: 10.7498/aps.69.20200984
    [4] Dong Bo-Wen, Zhang Jing-Yan, Peng Li-Cong, He Min, Zhang Ying, Zhao Yun-Chi, Wang Chao, Sun Yang, Cai Jian-Wang, Wang Wen-Hong, Wei Hong-Xiang, Shen Bao-Gen, Jiang Yong, Wang Shou-Guo. Multi-field control on magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137507. doi: 10.7498/aps.67.20180931
    [5] Zhao Wei-Sheng, Huang Yang-Qi, Zhang Xue-Ying, Kang Wang, Lei Na, Zhang You-Guang. Overview and advances in skyrmionics. Acta Physica Sinica, 2018, 67(13): 131205. doi: 10.7498/aps.67.20180554
    [6] Li Wen-Jing, Guang Yao, Yu Guo-Qiang, Wan Cai-Hua, Feng Jia-Feng, Han Xiu-Feng. Skyrmions in magnetic thin film heterostructures. Acta Physica Sinica, 2018, 67(13): 131204. doi: 10.7498/aps.67.20180549
    [7] Zhang Lei. Critical behaviors of helimagnetic ordering systems relating to skyrmion. Acta Physica Sinica, 2018, 67(13): 137501. doi: 10.7498/aps.67.20180137
    [8] Hu Yang-Fan, Wan Xue-Jin, Wang Biao. Magnetoelastic phenomena and mechanisms of magnetic skyrmion crystal. Acta Physica Sinica, 2018, 67(13): 136201. doi: 10.7498/aps.67.20180251
    [9] Xia Jing, Han Zong-Yi, Song Yi-Fan, Jiang Wen-Jing, Lin Liu-Rong, Zhang Xi-Chao, Liu Xiao-Xi, Zhou Yan. Overview of magnetic skyrmion-based devices and applications. Acta Physica Sinica, 2018, 67(13): 137505. doi: 10.7498/aps.67.20180894
    [10] Chi Xiao-Dan, Hu Yong. Modulation of skyrmion diameter in centrosymmetric frustrated magnet. Acta Physica Sinica, 2018, 67(13): 137502. doi: 10.7498/aps.67.20172709
    [11] Liang Xue, Zhao Li, Qiu Lei, Li Shuang, Ding Li-Hong, Feng You-Hua, Zhang Xi-Chao, Zhou Yan, Zhao Guo-Ping. Skyrmions-based magnetic racetrack memory. Acta Physica Sinica, 2018, 67(13): 137510. doi: 10.7498/aps.67.20180764
    [12] Kong Ling-Yao. Research progress on topological properties and micro-magnetic simulation study in dynamics of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 137506. doi: 10.7498/aps.67.20180235
    [13] Jin Chen-Dong, Song Cheng-Kun, Wang Jin-Shuai, Wang Jian-Bo, Liu Qing-Fang. Research progress of micromagnetic magnetic skyrmions and applications. Acta Physica Sinica, 2018, 67(13): 137504. doi: 10.7498/aps.67.20180165
    [14] Xu Gui-Zhou, Xu Zhan, Ding Bei, Hou Zhi-Peng, Wang Wen-Hong, Xu Feng. Magnetic domain chirality and tuning of skyrmion topology. Acta Physica Sinica, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [15] Liu Yi-Zhou, Zang Jiadong. Overview and outlook of magnetic skyrmions. Acta Physica Sinica, 2018, 67(13): 131201. doi: 10.7498/aps.67.20180619
    [16] Li Zi-An, Chai Ke, Zhang Ming, Zhu Chun-Hui, Tian Huan-Fang, Yang Huai-Xin. In situ electron holography of magnetic skyrmions in nanostructures. Acta Physica Sinica, 2018, 67(13): 131203. doi: 10.7498/aps.67.20180426
    [17] Chen Ran, Zhou Li-Wei, Wang Jian-Yun, Chen Chang-Jun, Shao Xing-Long, Jiang Hao, Zhang Kai-Liang, Lü Lian-Rong, Zhao Jin-Shi. Multilevel switching mechanism for resistive random access memory based on Cu/SiOx/Al structure. Acta Physica Sinica, 2014, 63(6): 067202. doi: 10.7498/aps.63.067202
    [18] Dai Guang-Zhen, Dai Yue-Hua, Xu Tai-Long, Wang Jia-Yu, Zhao Yuan-Yang, Chen Jun-Ning, Liu Qi. First principles study on influence of oxygen vacancy in HfO2 on charge trapping memory. Acta Physica Sinica, 2014, 63(12): 123101. doi: 10.7498/aps.63.123101
    [19] Yang Jin, Zhou Mao-Xiu, Xu Tai-Long, Dai Yue-Hua, Wang Jia-Yu, Luo Jing, Xu Hui-Fang, Jiang Xian-Wei, Chen Jun-Ning. Composite interfaces and electrode properties of resistive random access memory devices. Acta Physica Sinica, 2013, 62(24): 248501. doi: 10.7498/aps.62.248501
    [20] Gao Bo, Yu Xue-Feng, Ren Di-Yuan, Li Yu-Dong, Cui Jiang-Wei, Li Mao-Shun, Li Ming, Wang Yi-Yuan. Research on the total-dose irradiation damage effect for static random access memory-based field programmable gate array. Acta Physica Sinica, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
Metrics
  • Abstract views:  7010
  • PDF Downloads:  439
  • Cited By: 0
Publishing process
  • Received Date:  10 March 2018
  • Accepted Date:  07 May 2018
  • Published Online:  05 July 2018

/

返回文章
返回