-
Ultrasonic welding is one of the main applications of high-power ultrasound and is used in the automotive industry and aerospace. Transducers and tool are important parts of the ultrasonic welding system. Different tools are required for different welding objects. For larger plastic welded parts, it is necessary to weld them with large-sized welding tools. Due to the large size of the welding tool, under the excitation of the transducer, the tool will produce a coupling effect of longitudinal vibration and lateral vibration. Lateral vibration will cause the radiation surface of the tool to be non-uniformly displaced, and the working efficiency and welding results of the welding system will also be affected. So, in this paper, the phononic crystal bandgap theory and coupling vibration theory are used to study the coupled vibration of large-sized rectangular plastic ultrasonic welding tools. In order to improve the work efficiency and radiation surface's displacement uniformity of the tool, the phononic crystal structure is used to suppress the lateral vibration of the large-sized plastic ultrasonic welding tool, and the lateral vibration band gap of the phononic crystal structure is calculated. The longitudinal resonance frequency of the system is designed in the band gap range of the lateral vibration of the tool. So the lateral vibration of the tool can be effectively suppressed. The longitudinal vibration displacements on the radiation surface of the rectangular tool before and after vibration suppression are analyzed and compared with each other. The vibration mode of the ultrasonic welding system is simulated by the Comsol Multiphysics finite element software. The large-scaled tool with phononic crystal structure has a radiation surface displacement compared with the tool without phononic crystal structure, and the results show that the radiation surface displacement with phononic crystal structure will increase and tend to be uniform, greatly optimize the welding effect, improve the working efficiency of the welding system, and meet the needs of practical engineering. It is concluded that the longitudinal resonance frequency of the ultrasonic plastic welding system within the lateral vibration bandgap on the phononic crystal structure can not only suppress the lateral vibration, but also make the longitudinal displacement of the radiation surface more uniform and larger. Therefore, the work efficiency is greatly improved.
-
Keywords:
- coupled vibration /
- phononic crystal /
- vibration suppression
[1] Lin S Y, Zhang F C, Guo X W 1991 J. Acoust. 16 91 (in Chinese) [林书玉, 张福成, 郭孝武 1991 声学学报 16 91]
[2] Lin S Y, Zhang F C 1992 J. Acoust. 17 451 (in Chinese) [林书玉, 张福成 1992 声学学报 17 451]
[3] Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defense Industry Press) p196 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社)第196页]
[4] Gripp J A B, L Góes C S, Heuss O, Scinocca F 2015 Smart Mater. Struct. 24 125017
[5] Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302 (in Chinese) [张思文, 吴九汇 2013 物理学报 62 134302]
[6] Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979
[7] Shu H S, Zhang F, Liu S G, Gao E W, Li S D 2014 J. Vib. Shock 33 147 (in Chinese) [舒海生, 张法, 刘少刚, 高恩武, 李世丹 2014 振动与冲击 33 147]
[8] Chen S B, Han X Y, Yu D L, Wen J H 2010 Acta Phys. Sin. 59 387 (in Chinese) [陈圣兵, 韩小云, 郁殿龙, 温激鸿 2010 物理学报 59 387]
[9] Yu D L, Liu Y Z, Qiu J, Wang G, Wen J H, Zhao H G 2005 J. Vib. Shock 24 92 (in Chinese) [郁殿龙, 刘耀宗, 邱静王刚, 温激鸿, 赵宏刚 2005 振动与冲击 24 92]
[10] Zhang H, Wen J H, Xiao Y, Wang G, Wen X S 2015 J. Sound Vib. 343 104
[11] Wen J H,Wang G, Yu D L, Zhao H G, Liu Y Z, Wen X S 2007 Sci. China 37 1126 (in Chinese) [温激鸿, 王刚, 郁殿龙, 赵宏刚, 刘耀宗, 温熙森 2007 中国科学 37 1126]
[12] Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979
[13] Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids Struct. 45 4203
[14] Behrens S, Moheimani S O R, Fleming A J 2003 J. Sound Vib. 266 929
[15] Yang M Y, Wu L C, Tseng J Y 2008 Phys. Lett. A 372 4730
[16] Lin S Y, Xian X J 2014 Shaanxi Normal Univ. 42 31 (in Chinese) [林书玉, 鲜小军 2014 陕西师范大学学报 42 31]
[17] Tang Y F, Lin S Y 2016 Acta Phys. Sin. 65 164202 (in Chinese) [唐一璠, 林书玉 2016 物理学报 65 164202]
[18] Lin S Y, Zhang F C, Yuan W J 1990 Acoust. Electron. Engin. 20 16 (in Chinese) [林书玉, 张福成, 员维俭 1990 声学与电子工程 4 16]
[19] Lin S Y, Zhang F C 1992 Technol. Acoust. 11 24 (in Chinese) [林书玉, 张福成 1992 声学技术 11 24]
[20] Zhang H, Xiao Y, Wen J H, Yu D L, Wen X S 2016 Appl. Phys. Lett. 108 1734
[21] Wang G, Chen S B, Wen J H 2011 Smart. Mater. Struct. 20 015026
[22] Cao Y J, Dong C H, Zhou P Q 2006 Acta Phys. Sin. 55 6470 (in Chinese) [曹永军, 董纯红, 周培勤 2006 物理学报 55 6470]
[23] Wen J H 2005 Ph. D. Dissertation (Beijing: National Defense University) (in Chinese) [温激鸿 2005 博士学位论文 (北京: 国防科技大学)]
[24] Chen A L 2008 Ph. D. Dissertation (Beijing: Jiaotong University) (in Chinese) [陈阿丽 2008 博士学位论文(北京: 交通大学)]
[25] Guo F D 2015 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese) [郭凤丹 2015 硕士学位论文 (北京: 北京交通大学)]
[26] Jensen J S, Sigmund O, Thomsen J J, Bendse M P 2002 15th Nordic Seminar on Computational Mechanics Aalborg, October 18-19, 2002 p63
-
[1] Lin S Y, Zhang F C, Guo X W 1991 J. Acoust. 16 91 (in Chinese) [林书玉, 张福成, 郭孝武 1991 声学学报 16 91]
[2] Lin S Y, Zhang F C 1992 J. Acoust. 17 451 (in Chinese) [林书玉, 张福成 1992 声学学报 17 451]
[3] Wen X S, Wen J H, Yu D L, Wang G, Liu Y Z, Han X Y 2009 Phononic Crystals (Beijing: National Defense Industry Press) p196 (in Chinese) [温熙森, 温激鸿, 郁殿龙, 王刚, 刘耀宗, 韩小云 2009 声子晶体 (北京: 国防工业出版社)第196页]
[4] Gripp J A B, L Góes C S, Heuss O, Scinocca F 2015 Smart Mater. Struct. 24 125017
[5] Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302 (in Chinese) [张思文, 吴九汇 2013 物理学报 62 134302]
[6] Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979
[7] Shu H S, Zhang F, Liu S G, Gao E W, Li S D 2014 J. Vib. Shock 33 147 (in Chinese) [舒海生, 张法, 刘少刚, 高恩武, 李世丹 2014 振动与冲击 33 147]
[8] Chen S B, Han X Y, Yu D L, Wen J H 2010 Acta Phys. Sin. 59 387 (in Chinese) [陈圣兵, 韩小云, 郁殿龙, 温激鸿 2010 物理学报 59 387]
[9] Yu D L, Liu Y Z, Qiu J, Wang G, Wen J H, Zhao H G 2005 J. Vib. Shock 24 92 (in Chinese) [郁殿龙, 刘耀宗, 邱静王刚, 温激鸿, 赵宏刚 2005 振动与冲击 24 92]
[10] Zhang H, Wen J H, Xiao Y, Wang G, Wen X S 2015 J. Sound Vib. 343 104
[11] Wen J H,Wang G, Yu D L, Zhao H G, Liu Y Z, Wen X S 2007 Sci. China 37 1126 (in Chinese) [温激鸿, 王刚, 郁殿龙, 赵宏刚, 刘耀宗, 温熙森 2007 中国科学 37 1126]
[12] Spadoni A, Ruzzene M, Cunefare K 2009 J. Intel. Mat. Syst. Struct. 20 979
[13] Wang Y Z, Li F M, Huang W H, Jiang X A, Wang Y S, Kishimoto K 2008 Int. J. Solids Struct. 45 4203
[14] Behrens S, Moheimani S O R, Fleming A J 2003 J. Sound Vib. 266 929
[15] Yang M Y, Wu L C, Tseng J Y 2008 Phys. Lett. A 372 4730
[16] Lin S Y, Xian X J 2014 Shaanxi Normal Univ. 42 31 (in Chinese) [林书玉, 鲜小军 2014 陕西师范大学学报 42 31]
[17] Tang Y F, Lin S Y 2016 Acta Phys. Sin. 65 164202 (in Chinese) [唐一璠, 林书玉 2016 物理学报 65 164202]
[18] Lin S Y, Zhang F C, Yuan W J 1990 Acoust. Electron. Engin. 20 16 (in Chinese) [林书玉, 张福成, 员维俭 1990 声学与电子工程 4 16]
[19] Lin S Y, Zhang F C 1992 Technol. Acoust. 11 24 (in Chinese) [林书玉, 张福成 1992 声学技术 11 24]
[20] Zhang H, Xiao Y, Wen J H, Yu D L, Wen X S 2016 Appl. Phys. Lett. 108 1734
[21] Wang G, Chen S B, Wen J H 2011 Smart. Mater. Struct. 20 015026
[22] Cao Y J, Dong C H, Zhou P Q 2006 Acta Phys. Sin. 55 6470 (in Chinese) [曹永军, 董纯红, 周培勤 2006 物理学报 55 6470]
[23] Wen J H 2005 Ph. D. Dissertation (Beijing: National Defense University) (in Chinese) [温激鸿 2005 博士学位论文 (北京: 国防科技大学)]
[24] Chen A L 2008 Ph. D. Dissertation (Beijing: Jiaotong University) (in Chinese) [陈阿丽 2008 博士学位论文(北京: 交通大学)]
[25] Guo F D 2015 M. S. Thesis (Beijing: Beijing Jiaotong University) (in Chinese) [郭凤丹 2015 硕士学位论文 (北京: 北京交通大学)]
[26] Jensen J S, Sigmund O, Thomsen J J, Bendse M P 2002 15th Nordic Seminar on Computational Mechanics Aalborg, October 18-19, 2002 p63
Catalog
Metrics
- Abstract views: 6363
- PDF Downloads: 80
- Cited By: 0