Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

An ultrawideband linear-to-circular polarization converter based on multiphysics regulation

Zeng Li Liu Guo-Biao Zhang Hai-Feng Huang Tong

Citation:

An ultrawideband linear-to-circular polarization converter based on multiphysics regulation

Zeng Li, Liu Guo-Biao, Zhang Hai-Feng, Huang Tong
PDF
HTML
Get Citation
  • In order to design a tunable linear-to-circular polarization converter in microwave band, an ultra-broadband linear-to-circular polarization converter (LCPC) based on multiphysics regulation is proposed and studied by combining solid state plasma and vanadium dioxide (VO2) in this article. By using the electric control way to control the states of the solid plasma resonator, the solid state plasma can generate excitation and non-excitation state. By using the temperature (T) control way to regulate the phase transition state of the VO2 resonator, the VO2 can generate insulating and metallic state. The purpose of dynamic shift of the proposed LCPC′s operating band can be realized. The polarization conversion rate curve, reflection phase curve, the axial ratio curve and the surface current diagram of the proposed LCPC are analyzed and simulated by the full-wave simulation software HFSS and the effects of parameters r1 and r3 on the axial ratio are also discussed. When none of all the solid plasma regions are excited and T < 68 ℃ , the presented LCPC is in No. 1 state. On the basis of No. 1 state, if all the solid state plasma are excited, the presented LCPC is in No. 2 state. Similarly, on the basis of No. 1 state, the presented LCPC will be transformed to No. 3 state when T ≥ 68 ℃. The axial ratio band which is less than 3 dB (3 dB AR band) is 14.3−29.7 GHz (the relative bandwidth is 70%) in No. 2 state. The 3 dB AR bands which are 14.4−23.4 GHz and 28.6−35.9 GHz (the relative bandwidths are 47.61% and 22.64%) show that the proposed LCPC has the ability to shift the working band to high frequency range. When switching the LCPC to No. 3 state, the 3 dB AR bands which are 8.4−11.2 GHz and 18.7−29.5 GHz (the relative bandwidths are 28.57% and 44.81%) are shifted to low frequency region. Compared with traditional LCPC, our design has the advantages of diverse control means, wide bandwidth, flexible design and strong functionality. At the same time, this LCPC presents a new design method and idea for multiphysical field regulated devices.
      Corresponding author: Zhang Hai-Feng, hanlor@163.com
    • Funds: Project supported by the Open Research Program of State Key Laboratory of Millimeter Waves of Southeast University, China (Grant No. K201927) and the University-Level University Students' Innovative Training Programs.
    [1]

    Ling F, Zhong Z, Huang R, Zhang B 2018 Sci. Rep. 8 9843Google Scholar

    [2]

    Yan B, Zhong K, Ma H, Li Y, Sui C, Wang J, Shi Y 2017 Opt. Commun. 383 57Google Scholar

    [3]

    杨化 2015 硕士学位论文 (南京: 南京航空航天大学)

    Yang H 2015 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar

    [5]

    Su H, Lan F, Yang Z, Zhang Y, Shi Z, Li M, Shi M, Luo F, Liang Z 2016 Antennas, Propagation and EM Theory (ISAPE), 2016 11th International Symposium on. IEEE Guilin, China, October 18−21, 2016 p206

    [6]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717Google Scholar

    [7]

    Zhai Y C, Wu Q, Tan J J, Tao H, Gao F H, Zhu J H, Zhang Z Y, Du J L, Hou Y D 2015 Microelectron. Eng. 145 49Google Scholar

    [8]

    Zhang H F, Zhang H, Yao Y, Yang J, Liu J X 2018 IEEE Photonics J. 10 1

    [9]

    余志洋, 刘少斌, 薛峰, 李海明 2015 2015年全国微波毫米波会议, 合肥市, 2015年5月30日—6月2日, 第522页

    Yu Z Y, Liu S B, Xue F, Li H M 2015 2015 National Conference on Microwave and Millimeter Wave Hefei, May 30−June 2, 2015 p522 (in Chinese)

    [10]

    Kong X K, Mo J J, Yu Z Y, Shi W, Li H M, Bian B R 2016 Int. J. Mod Phys. B 30 1650070Google Scholar

    [11]

    Song Z, Wang K, Li J, Liu Q H 2018 Opt. Express 26 7148Google Scholar

    [12]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383Google Scholar

    [13]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501Google Scholar

    [14]

    Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908Google Scholar

    [15]

    Liu Z M, Li Y, Zhang J, Huang Y Q, Li Z P, Pei J H, Fang B Y, Wang X H, Xiao H 2017 IEEE Photonic. Tech. L. 29 1967Google Scholar

    [16]

    Madan H, Zhang H T, Jerry M, Mukherjee D, Alem N, Engel-Herbert R, Datta S 2015 Electron Devices Meeting (IEDM), 2015 IEEE International Washington DC, USA, December 7−9, 2015 p9

    [17]

    Vitale W A, Paone A, Fernandez-Bolanos M, Bazigos A, Grabinski W, Schuler A, Ionescu A M 2014 Proceedings of the 72nd Annual Device Research Conference (No. EPFL-CONF-200324), Santa Barbara, California, USA, June 22−25 2014 p1528

    [18]

    Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368Google Scholar

    [19]

    Cai H, Chen S, Zou C, Huang Q, Liu Y, Hu X, Fu Z, Zhao Y, He H, Lu Y 2018 Adv. Opt. Mater. 6 1800257Google Scholar

    [20]

    余志洋 2016 硕士学位论文 (南京: 南京航空航天大学)

    Yu Z Y 2016 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [21]

    杨靖, 章海锋, 张浩, 刘佳轩 2018 激光与光电子学进展 55 091602

    Yang J, Zhang H F, Zhang H, Liu J X 2018 Laser & Optoelectronics Prog. 55 091602

    [22]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [23]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106Google Scholar

    [24]

    Li W, Chang S J, Wang X H, Lin L, Bai J J 2014 Optoelectronics Lett. 10 180Google Scholar

    [25]

    施维 2017 硕士学位论文 (南京: 南京航空航天大学)

    Shi W 2017 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [26]

    于惠存, 曹祥玉, 高军, 韩江枫, 周禹龙 2018 空军工程大学学报 (自然科学版) 19 60Google Scholar

    Yu C H, Cao X Y, Gao J, Han J F, Zhou Y L 2018 J. Air Force Eng. Univ. (Nat. Sci. Ed.) 19 60Google Scholar

  • 图 1  线-圆极化转换器结构单元示意图 (a)正视图; (b)侧视图; (c)立体图

    Figure 1.  Structure schematic of the unit cell for linear-to-circular polarization converter: (a) Front view; (b) side view; (c) stereogram.

    图 2  线-圆极化转换器在三种工作状态下的极化转换率和反射相位差曲线 (a)工作状态一; (b)工作状态二; (c)工作状态三

    Figure 2.  Polarization conversion rate curves and reflection phase difference curves of linear-to-circular polarization converter in three states: (a) No.1 state; (b) No.2 state; (c) No.3 state.

    图 3  线-圆极化转换器在电控和温控时的轴比曲线 (a)电控时, 工作状态一、二的轴比曲线; (b) 温控时, 工作状态一、三的轴比曲线

    Figure 3.  Axial ratio curves of linear-to-circular polarization converter when using electric control and temperature control: (a) Axial ratio curves in No. 1 state and in No. 2 state when using electric control; (b) axial ratio curves in No. 1 state and in No. 3 state when using temperature control.

    图 4  线-圆极化转换器在三种工作状态下, 顶层谐振单元与底层反射板在不同频点处的表面电流图 (a)工作状态一时, 15.03 GHz频点处; (b)工作状态一时, 21.3 GHz频点处; (c)工作状态二时, 32.5 GHz频点处; (d)工作状态三时, 10 GHz频点处

    Figure 4.  Surface current diagrams of the top resonant unit and the bottom reflector at different frequency points in three states, respectively: (a) No.1 state at 15.03 GHz; (b) No.1 state at 21.3 GHz; (c) No.2 state at 32.5 GHz; (d) No.3 state at 10 GHz.

    图 5  当其他参数不变, 结构参数r1r3在不同取值时的轴比曲线 (a) r1 = 0.71, 0.81, 0.91 mm; (b) r3 = 1.82, 1.87, 1.92 mm

    Figure 5.  Axial ratio curves for parameters r1 and r3 at different values when other parameters remain unchanged: (a) r1 = 0.71, 0.81, 0.91 mm; (b) r3 = 1.82, 1.87, 1.92 mm.

    表 1  线-圆极化转换器的参数

    Table 1.  Parameters of linear-to-circular polarization converter.

    参数/mm数值参数/mm数值
    a0.2417h11.5
    b0.48h20.5
    c0.47p4.8
    d0.35r10.81
    e0.68r21.1583
    f1.2r31.87
    g0.8w0.018
    DownLoad: CSV
  • [1]

    Ling F, Zhong Z, Huang R, Zhang B 2018 Sci. Rep. 8 9843Google Scholar

    [2]

    Yan B, Zhong K, Ma H, Li Y, Sui C, Wang J, Shi Y 2017 Opt. Commun. 383 57Google Scholar

    [3]

    杨化 2015 硕士学位论文 (南京: 南京航空航天大学)

    Yang H 2015 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    Cheng Y Z, Withayachumnankul W, Upadhyay A, Headland D, Nie Y, Gong R Z, Bhaskaran M, Sriram S, Abbott D 2014 Appl. Phys. Lett. 105 181111Google Scholar

    [5]

    Su H, Lan F, Yang Z, Zhang Y, Shi Z, Li M, Shi M, Luo F, Liang Z 2016 Antennas, Propagation and EM Theory (ISAPE), 2016 11th International Symposium on. IEEE Guilin, China, October 18−21, 2016 p206

    [6]

    Ma H F, Wang G Z, Kong G S, Cui T J 2014 Opt. Mater. Express 4 1717Google Scholar

    [7]

    Zhai Y C, Wu Q, Tan J J, Tao H, Gao F H, Zhu J H, Zhang Z Y, Du J L, Hou Y D 2015 Microelectron. Eng. 145 49Google Scholar

    [8]

    Zhang H F, Zhang H, Yao Y, Yang J, Liu J X 2018 IEEE Photonics J. 10 1

    [9]

    余志洋, 刘少斌, 薛峰, 李海明 2015 2015年全国微波毫米波会议, 合肥市, 2015年5月30日—6月2日, 第522页

    Yu Z Y, Liu S B, Xue F, Li H M 2015 2015 National Conference on Microwave and Millimeter Wave Hefei, May 30−June 2, 2015 p522 (in Chinese)

    [10]

    Kong X K, Mo J J, Yu Z Y, Shi W, Li H M, Bian B R 2016 Int. J. Mod Phys. B 30 1650070Google Scholar

    [11]

    Song Z, Wang K, Li J, Liu Q H 2018 Opt. Express 26 7148Google Scholar

    [12]

    Zylbersztejn A, Mott N F 1975 Phys. Rev. B 11 4383Google Scholar

    [13]

    Ha S D, Zhou Y, Fisher C J, Ramanathan S, Treadway J P 2013 J. Appl. Phys. 113 184501Google Scholar

    [14]

    Huang W X, Yin X G, Huang C P, Wang Q J, Miao T F, Zhu Y Y 2010 Appl. Phys. Lett. 96 261908Google Scholar

    [15]

    Liu Z M, Li Y, Zhang J, Huang Y Q, Li Z P, Pei J H, Fang B Y, Wang X H, Xiao H 2017 IEEE Photonic. Tech. L. 29 1967Google Scholar

    [16]

    Madan H, Zhang H T, Jerry M, Mukherjee D, Alem N, Engel-Herbert R, Datta S 2015 Electron Devices Meeting (IEDM), 2015 IEEE International Washington DC, USA, December 7−9, 2015 p9

    [17]

    Vitale W A, Paone A, Fernandez-Bolanos M, Bazigos A, Grabinski W, Schuler A, Ionescu A M 2014 Proceedings of the 72nd Annual Device Research Conference (No. EPFL-CONF-200324), Santa Barbara, California, USA, June 22−25 2014 p1528

    [18]

    Kats M A, Blanchard R, Genevet P, Yang Z, Qazilbash M M, Basov D N, Ramanathan S, Capasso F 2013 Opt. Lett. 38 368Google Scholar

    [19]

    Cai H, Chen S, Zou C, Huang Q, Liu Y, Hu X, Fu Z, Zhao Y, He H, Lu Y 2018 Adv. Opt. Mater. 6 1800257Google Scholar

    [20]

    余志洋 2016 硕士学位论文 (南京: 南京航空航天大学)

    Yu Z Y 2016 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [21]

    杨靖, 章海锋, 张浩, 刘佳轩 2018 激光与光电子学进展 55 091602

    Yang J, Zhang H F, Zhang H, Liu J X 2018 Laser & Optoelectronics Prog. 55 091602

    [22]

    Zhao Y, Huang Q P, Cai H L, Lin X X, Lu Y L 2018 Opt. Commun. 426 443Google Scholar

    [23]

    Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y, Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106Google Scholar

    [24]

    Li W, Chang S J, Wang X H, Lin L, Bai J J 2014 Optoelectronics Lett. 10 180Google Scholar

    [25]

    施维 2017 硕士学位论文 (南京: 南京航空航天大学)

    Shi W 2017 M.S. Thesis (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [26]

    于惠存, 曹祥玉, 高军, 韩江枫, 周禹龙 2018 空军工程大学学报 (自然科学版) 19 60Google Scholar

    Yu C H, Cao X Y, Gao J, Han J F, Zhou Y L 2018 J. Air Force Eng. Univ. (Nat. Sci. Ed.) 19 60Google Scholar

  • [1] Wang Dong-Jun, Sun Zi-Han, Zhang Yuan, Tang Li, Yan Li-Ping. Ultra-wideband thin frequency-selective surface absorber against sheet resistance fluctuation. Acta Physica Sinica, 2024, 73(2): 024201. doi: 10.7498/aps.73.20231365
    [2] Feng Kui-Sheng, Li Na, Li Tong. Ultra-thin ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [3] Ultra-thin, ultra-wideband tunable radar absorber based on hybrid incorporation of active devices. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211254
    [4] Zhao Zan-Shan, Li Pei-Li. All-optical broadcast ultra-wideband signal source based on semiconductor fiber ring laser. Acta Physica Sinica, 2019, 68(14): 140401. doi: 10.7498/aps.68.20182301
    [5] Xu Jin, Li Rong-Qiang, Jiang Xiao-Ping, Wang Shen-Yun, Han Tian-Cheng. Ultra-wideband linear polarization converter based on square split ring. Acta Physica Sinica, 2019, 68(11): 117801. doi: 10.7498/aps.68.20190267
    [6] Li Tang-Jing, Liang Jian-Gang, Li Hai-Peng, Niu Xue-Bin, Liu Ya-Qiao. Broadband circularly polarized high-gain antenna design based on linear-to-circular polarization conversion focusing metasurface. Acta Physica Sinica, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [7] Zhuang Ya-Qiang, Wang Guang-Ming, Zhang Xiao-Kuan, Zhang Chen-Xin, Cai Tong, Li Hai-Peng. Design of reflective linear-circular polarization converter based on phase gradient metasurface. Acta Physica Sinica, 2016, 65(15): 154102. doi: 10.7498/aps.65.154102
    [8] Yu Ji-Bao, Ma Hua, Wang Jia-Fu, Feng Ming-De, Li Yong-Feng, Qu Shao-Bo. High-efficiency ultra-wideband polarization conversion metasurfaces based on split elliptical ring resonators. Acta Physica Sinica, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [9] Guo Rong, Cao Xiang-Yu, Yuan Zi-Dong, Xu Xue-Fei. Design of a novel wideband directivity patch antenna. Acta Physica Sinica, 2014, 63(24): 244102. doi: 10.7498/aps.63.244102
    [10] Xiao Xia, Song Hang, Wang Liang, Wang Zong-Jie, Lu Hong. Ultra-wideband microwave robust Capon beamforming imaging system for early breast cancer detection. Acta Physica Sinica, 2014, 63(19): 194102. doi: 10.7498/aps.63.194102
    [11] Ao Hong-Rui, Chen Yi, Dong Ming, Jiang Hong-Yuan. Multiphysics-based simulation on heat conduction mechanism of TFC head and its influencing factors. Acta Physica Sinica, 2014, 63(3): 034401. doi: 10.7498/aps.63.034401
    [12] Han Bo-Lin, Lou Shu-Qin, Lu Wen-Liang, Su Wei, Zou Hui, Wang Xin. Novel ultra-broadband polarization beam splitter based on dual-core photonic crystal fiber. Acta Physica Sinica, 2013, 62(24): 244202. doi: 10.7498/aps.62.244202
    [13] Liu Ming, Zhang Ming-Jiang, Wang An-Bang, Wang Long-Sheng, Ji Yong-Ning, Ma Zhe. Generation of ultra-wideband signals by directly current-modulating distributed feedback laser diode subjected to optical feedback. Acta Physica Sinica, 2013, 62(6): 064209. doi: 10.7498/aps.62.064209
    [14] Mo Man-Man, Wen Qi-Ye, Chen Zhi, Yang Qing-Hui, Li Sheng, Jing Yu-Lan, Zhang Huai-Wu. A polarization-independent and ultra-broadband terahertz metamaterial absorber studied based on circular-truncated cone structure. Acta Physica Sinica, 2013, 62(23): 237801. doi: 10.7498/aps.62.237801
    [15] Yin Ming, Zhou Shou-Huan, Feng Guo-Ying. Tunable high efficiency broadband second-harmonic conversion in quasi-phase matching. Acta Physica Sinica, 2012, 61(23): 234206. doi: 10.7498/aps.61.234206
    [16] Gong Yun-Rui, He Di, He Chen. Investigation of blind detection mechanism for chaotic UWB system based on generalized negentrogy. Acta Physica Sinica, 2012, 61(12): 120502. doi: 10.7498/aps.61.120502
    [17] Yang Rui, Xie Yong-Jun, Hu Hai-Peng, Wang Rui, Man Ming-Yuan, Wu Zhao-Hai. Ultra wideband planner inverted-F antenna with metamaterials loading. Acta Physica Sinica, 2010, 59(5): 3173-3178. doi: 10.7498/aps.59.3173
    [18] Wang Jian, Sun Jun-Qiang, Guo Yong-Juan, Li Jing, Sun Qi-Zhen. Experimental investigation of a novel tunable all-optical wavelength converter with a double-ring cavity. Acta Physica Sinica, 2007, 56(6): 3251-3254. doi: 10.7498/aps.56.3251
    [19] Wang Peng, Zhao Huan, Zhao Yan-Ying, Wang Zhao-Hua, Tian Jin-Rong, Li De-Hua, Wei Zhi-Yi. Pulse width measurement of ultra-broad-bandwidth Ti: sapphire oscillator using SPIDER technique. Acta Physica Sinica, 2007, 56(1): 224-228. doi: 10.7498/aps.56.224
    [20] Xu Fan, Zhang Xin-Liang, Huang De-Xiu. Theoretical and experimental investigations on a novel tunable all-optical wavelength converter. Acta Physica Sinica, 2004, 53(7): 2165-2169. doi: 10.7498/aps.53.2165
Metrics
  • Abstract views:  8971
  • PDF Downloads:  98
  • Cited By: 0
Publishing process
  • Received Date:  29 August 2018
  • Accepted Date:  28 November 2018
  • Available Online:  01 March 2019
  • Published Online:  05 March 2019

/

返回文章
返回