-
Manipulating the core-shell structure with the optical force has been extensively studied, giving birth to applications such as particle sorting, biomarkers and drug delivery. Tailoring the optical force exerted on the core-shell above the metallic film remains unexplored, despite the obvious benefits for both fundamental research and applications including strong coupling, surface enhanced spectroscopy, nanolaser, and nanoscale sensing. In this work, we systematically investigate the optical force exerted on a dielectric/metal core-shell above a gold film by utilizing the Maxwell stress tensor formalism. It is found that at the present gold substrate, the optical force on the core-shell can be one order of magnitude larger than that on the individual core-shell due to the strong coupling between the core-shell and the gold film. Interestingly, the direction of the optical force can be reversed from positive to negative by distributing the local field from the upside of core-shell to the structure gap through changing the excitation wavelength. Furthermore, we demonstrate that the magnitude and peak wavelength of the optical force can be well controlled by altering the structure gap, the size and refractive index of the core. More specifically, it is found that the coupling strength between the core-shell and the gold film decreases with the gap size increasing. As a result, we observe the blue shift of bonding mode and the decrease of local field in the gap, which leads the force peak wavelength to be blue-shifted and the force peak magnitude to decrease, respectively. Also, by increasing the radius and refractive index of the core, a red shift of force peak is accompanied with the red shift of the bonding mode. In addition, the force peak magnitude follows the same trend as the total local field enhancement factor when the radius and refractive index of the core change. We hope that our results open the way to control the cavity size of particle on film structure, which would be beneficial for tailoring the light matter interaction even down to single molecular level and promises to have the applications in novel functional photonic devices.
-
Keywords:
- optical force /
- surface plasmons /
- core-shell structure /
- plasmon hybridization
[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
Google Scholar
[2] Svoboda K, Block S M 1994 Opt. Lett. 19 930
Google Scholar
[3] Gong L P, Zhang X H, Gu B, Zhu Z Q, Rui G H, He J, Zhan Q W, Cui Y P 2019 Nanophotonics 8 1117
Google Scholar
[4] Li H, Cao Y Y, Zhou L M, Xu X H, Zhu T T, Shi Y Z, Qiu C W, Ding W Q 2020 Adv. Opt. Photonics 12 288
Google Scholar
[5] Tong L M, Miljkovic V D, Johansson P, Käll M 2011 Nano Lett. 11 4505
Google Scholar
[6] Huang J, Yang Y 2015 Nanomaterials 5 1048
Google Scholar
[7] Lu J S, Yang H B, Zhou L N, Yang Y Q, Luo S, Li Q, Qiu M 2017 Phys. Rev. Lett. 118 043601
Google Scholar
[8] Bezryadina A S, Preece D C, Chen J C, Chen Z G 2016 Light-Sci. Appl. 5 e16158
Google Scholar
[9] Xin H B, Li Y C, Xu D K, Zhang Y L, Chen C H, Li B J 2017 Small 13 1603418
Google Scholar
[10] Dhakal K R, Lakshminarayanan V 2018 Prog. Opt. 63 1
Google Scholar
[11] Marago O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807
Google Scholar
[12] Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349
Google Scholar
[13] Liu X S, Wu Y, Xu X H, Li Y C, Zhang Y, Li B J 2019 Small 1905209
Google Scholar
[14] 李银妹, 龚雷, 李迪, 刘伟伟, 钟敏成, 周金华, 王自强, 姚焜 2015 中国激光 42 0101001
Google Scholar
Li Y M, Gong L, Li D, Liu W W, Zhong M C, Zhou Z H, Wang Z Q, Yao K 2015 Chin. J. Las. 42 0101001
Google Scholar
[15] 童廉明, 徐红星 2012 物理 41 582
Tong L M, Xu H X 2012 Physics 41 582
[16] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[17] Zhang W H, Huang L N, Santschi C, Martin O J 2010 Nano Lett. 10 1006
Google Scholar
[18] Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L P, Zhu S W, Lei T, Yuan X C 2013 Nat. Commun. 4 2891
Google Scholar
[19] Li Z P, Zhang S P, Tong L M, Wang P J, Dong B, Xu H X 2014 ACS Nano 8 701
Google Scholar
[20] Chen H J, Liu S Y, Zi J, Lin Z F 2015 ACS Nano 9 1926
Google Scholar
[21] Liu H, Ng J, Wang S B, Lin Z F, Hang Z H, Chan C T, Zhu S N 2011 Phys. Rev. Lett. 106 087401
Google Scholar
[22] Demergis V, Florin E L 2012 Nano Lett. 12 5756
Google Scholar
[23] Zhang Q, Xiao J J, Zhang X M, Yao Y, Liu H 2013 Opt. Express 21 6601
Google Scholar
[24] Zhang Q, Xiao J J 2013 Opt. Lett. 38 4240
Google Scholar
[25] Simpson S H, Zemánek P, Maragò O M, Jones P H, Hanna S 2017 Nano Lett. 17 3485
Google Scholar
[26] Li G C, Zhang Y L, Lei D Y 2016 Nanoscale 8 7119
Google Scholar
[27] Xiao F J, Ren Y X, Shang W Y, Zhu W R, Han L, Lu H, Mei T, Premaratne M, Zhao J L 2018 Opt. Lett. 43 3413
Google Scholar
[28] Zhang Q, Li G C, Lo T W, Lei D Y 2018 J. Opt. 20 024010
Google Scholar
[29] Ho K H W, Shang A, Shi F H, Lo T W, Yeung P H, Yu Y S, Zhang X M, Wong K, Lei D Y 2018 Adv. Funct. Mater. 28 1800383
Google Scholar
[30] Li G C, Zhang Q, Maier S A, Lei D Y 2018 Nanophotonics 7 1865
Google Scholar
[31] Wu Z Q, Yang J L, Manjunath N K, Zhang Y J, Feng S R, Lu Y H, Wu J H, Zhao W W, Qiu C Y, Li J F, Lin S S 2018 Adv. Mater. 30 1706527
Google Scholar
[32] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629
Google Scholar
[33] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370
Google Scholar
[34] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
Google Scholar
[35] Saleh A A E, Dionne J A 2012 Nano Lett. 12 5581
Google Scholar
[36] Xiao F J, Wang G L, Gan X T, Shang W Y, Cao S Y, Zhu W R, Mei T, Premaratne M, Zhao J L 2019 Photonics Res. 7 00001
Google Scholar
[37] Xiao F J, Zhang J C, Yu W X, Zhu W R, Mei T, Premaratne M, Zhao J L 2020 Opt. Express 28 3000
Google Scholar
-
图 3 (a)核壳结构所受的纵向光学力Fz; 波长为(b) 540, (c) 670, (d) 790和(e) 830 nm时核壳结构周围电场强度增强因子EF的分布
Figure 3. (a) Longitudinal optical force Fz exerted on the core-shell on gold film. The electric-field intensity enhancement factor map of the core-shell on gold film at wavelengths of (b) 540, (c) 670, (d) 790, and (e) 830 nm, respectively.
图 4 核壳-金膜结构的(a)散射光谱、(b)光学力谱和(c)纵向光学力幅值及间隙的平均电场强度增强因子随结构间隙h的变化
Figure 4. (a) Scattering spectra of the core-shell on gold film; (b) longitudinal optical force spectra of the core-shell on gold film; (c) maximum longitudinal optical force and the average electric-field intensity enhancement factor as a function of gap size for the core-shell on gold film.
图 5 核壳-金膜结构的(a)散射光谱、(b)纵向光学力谱和(c)纵向光学力幅值以及间隙内平均电场强度增强因子随内核尺寸Rc的变化
Figure 5. (a) Scattering spectra of the core-shell on gold film; (b) longitudinal optical force spectra of the core-shell on gold film; (c) maximum longitudinal optical force as well as the average electric-field intensity enhancement factor as a function of dielectric core radius for the core-shell on gold film.
图 6 核壳-金膜结构的(a)散射光谱、(b)光学力谱和(c)纵向光学力幅值及间隙的平均电场强度增强因子随内核折射率nc的变化
Figure 6. (a) Scattering spectra of the core-shell on gold film; (b) longitudinal optical force spectra of the core-shell on gold film; (c) maximum longitudinal optical force and the average electric-field intensity enhancement factor as a function of index for the core-shell on gold film.
-
[1] Ashkin A 1970 Phys. Rev. Lett. 24 156
Google Scholar
[2] Svoboda K, Block S M 1994 Opt. Lett. 19 930
Google Scholar
[3] Gong L P, Zhang X H, Gu B, Zhu Z Q, Rui G H, He J, Zhan Q W, Cui Y P 2019 Nanophotonics 8 1117
Google Scholar
[4] Li H, Cao Y Y, Zhou L M, Xu X H, Zhu T T, Shi Y Z, Qiu C W, Ding W Q 2020 Adv. Opt. Photonics 12 288
Google Scholar
[5] Tong L M, Miljkovic V D, Johansson P, Käll M 2011 Nano Lett. 11 4505
Google Scholar
[6] Huang J, Yang Y 2015 Nanomaterials 5 1048
Google Scholar
[7] Lu J S, Yang H B, Zhou L N, Yang Y Q, Luo S, Li Q, Qiu M 2017 Phys. Rev. Lett. 118 043601
Google Scholar
[8] Bezryadina A S, Preece D C, Chen J C, Chen Z G 2016 Light-Sci. Appl. 5 e16158
Google Scholar
[9] Xin H B, Li Y C, Xu D K, Zhang Y L, Chen C H, Li B J 2017 Small 13 1603418
Google Scholar
[10] Dhakal K R, Lakshminarayanan V 2018 Prog. Opt. 63 1
Google Scholar
[11] Marago O M, Jones P H, Gucciardi P G, Volpe G, Ferrari A C 2013 Nat. Nanotechnol. 8 807
Google Scholar
[12] Juan M L, Righini M, Quidant R 2011 Nat. Photonics 5 349
Google Scholar
[13] Liu X S, Wu Y, Xu X H, Li Y C, Zhang Y, Li B J 2019 Small 1905209
Google Scholar
[14] 李银妹, 龚雷, 李迪, 刘伟伟, 钟敏成, 周金华, 王自强, 姚焜 2015 中国激光 42 0101001
Google Scholar
Li Y M, Gong L, Li D, Liu W W, Zhong M C, Zhou Z H, Wang Z Q, Yao K 2015 Chin. J. Las. 42 0101001
Google Scholar
[15] 童廉明, 徐红星 2012 物理 41 582
Tong L M, Xu H X 2012 Physics 41 582
[16] Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824
Google Scholar
[17] Zhang W H, Huang L N, Santschi C, Martin O J 2010 Nano Lett. 10 1006
Google Scholar
[18] Min C J, Shen Z, Shen J F, Zhang Y Q, Fang H, Yuan G H, Du L P, Zhu S W, Lei T, Yuan X C 2013 Nat. Commun. 4 2891
Google Scholar
[19] Li Z P, Zhang S P, Tong L M, Wang P J, Dong B, Xu H X 2014 ACS Nano 8 701
Google Scholar
[20] Chen H J, Liu S Y, Zi J, Lin Z F 2015 ACS Nano 9 1926
Google Scholar
[21] Liu H, Ng J, Wang S B, Lin Z F, Hang Z H, Chan C T, Zhu S N 2011 Phys. Rev. Lett. 106 087401
Google Scholar
[22] Demergis V, Florin E L 2012 Nano Lett. 12 5756
Google Scholar
[23] Zhang Q, Xiao J J, Zhang X M, Yao Y, Liu H 2013 Opt. Express 21 6601
Google Scholar
[24] Zhang Q, Xiao J J 2013 Opt. Lett. 38 4240
Google Scholar
[25] Simpson S H, Zemánek P, Maragò O M, Jones P H, Hanna S 2017 Nano Lett. 17 3485
Google Scholar
[26] Li G C, Zhang Y L, Lei D Y 2016 Nanoscale 8 7119
Google Scholar
[27] Xiao F J, Ren Y X, Shang W Y, Zhu W R, Han L, Lu H, Mei T, Premaratne M, Zhao J L 2018 Opt. Lett. 43 3413
Google Scholar
[28] Zhang Q, Li G C, Lo T W, Lei D Y 2018 J. Opt. 20 024010
Google Scholar
[29] Ho K H W, Shang A, Shi F H, Lo T W, Yeung P H, Yu Y S, Zhang X M, Wong K, Lei D Y 2018 Adv. Funct. Mater. 28 1800383
Google Scholar
[30] Li G C, Zhang Q, Maier S A, Lei D Y 2018 Nanophotonics 7 1865
Google Scholar
[31] Wu Z Q, Yang J L, Manjunath N K, Zhang Y J, Feng S R, Lu Y H, Wu J H, Zhao W W, Qiu C Y, Li J F, Lin S S 2018 Adv. Mater. 30 1706527
Google Scholar
[32] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X 2009 Nature 461 629
Google Scholar
[33] Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370
Google Scholar
[34] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
Google Scholar
[35] Saleh A A E, Dionne J A 2012 Nano Lett. 12 5581
Google Scholar
[36] Xiao F J, Wang G L, Gan X T, Shang W Y, Cao S Y, Zhu W R, Mei T, Premaratne M, Zhao J L 2019 Photonics Res. 7 00001
Google Scholar
[37] Xiao F J, Zhang J C, Yu W X, Zhu W R, Mei T, Premaratne M, Zhao J L 2020 Opt. Express 28 3000
Google Scholar
Catalog
Metrics
- Abstract views: 6413
- PDF Downloads: 99
- Cited By: 0