Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite

Guo Ning Zhou Zhou Ni Jian Cai Hong-Kun Zhang Jian-Jun Sun Yan-Yan Li Juan

Citation:

Thin film transistor based on two-dimensional organic-inorganic hybrid perovskite

Guo Ning, Zhou Zhou, Ni Jian, Cai Hong-Kun, Zhang Jian-Jun, Sun Yan-Yan, Li Juan
PDF
HTML
Get Citation
  • Despite the fact that three-dimensional organic-inorganic hybrid perovskite is regarded as a promising material in the field of optoelectronics and microelectronics due to its excellent photoelectric properties, however, the instability under the moisture environment and the gate-voltage screening effect associated with ionic transport are still serious, which restricts the development of perovskite devices. Here in this work, the lead iodide perovskite (PEA)2(MA)n–1PbnI3n+1 series are successfully prepared by one-step solution method, including pure-two-dimensional (pure-2D), quasi-two-dimensional (quasi-2D) and traditional three-dimensional (3D) perovskite materials. The dimension and microstructure of the perovskites are regulated, and the effects of dimensions on the performance of organic-inorganic hybrid perovskite materials are investigated firstly. The crystallization of the 2D perovskites and 3D perovskite films are observed obviously. Moreover, the surface of pure-2D perovskite film with discoid, regular and micron-sized grains is smoother than that of 3D perovskite film. And also, the unapparent grain boundary is exhibited in the quasi-2D perovskites. A uniform perovskite film with full coverage and inconspicuous grain boundaries facilitates the transmission capacity of the charge carriers in the channel layer due to the reduction of defects caused by the grain boundaries. And benefited from the high-quality films with inconspicuous grain boundary as demonstrated, the quasi-2D hybrid perovskite film exhibits a longer carrier lifetime (τns) than traditional 3D MAPbI3 perovskite film, revealing that the layered 2D structure is more favorable for carrier transport due to the fewer defects in it. In addition, under the condition of the same environment humidity, the 2D perovskite materials show better moisture stability. Then, to investigate the influences of dimensional structure on the perovskite field-effect devices, we fabricate the bottom-gate and top-contact thin film transistors (TFTs) based on the perovskite materials with different dimensions. As a result, the instability and ion migration effect for each of the devices are suppressed effectively due to the distinct 2D layer-structure and quantum confinement effect, which leads the device performance to be further improved. The device based on quasi-2D (n = 6) channel TFT achieves a hole mobility (μhole) of 3.9 cm2/(V·s), an on-off current ratio of 104 and more, and a 1.85V turn-on voltage of 1.85 V. The first application of quasi-2D organic and inorganic hybrid perovskite materials to thin film transistors provides a new idea for preparing the high-performance and stable thin film transistor devices.
      Corresponding author: Li Juan, lj1018@nankai.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 61076006, 61377031), National High Technology Research and Development Program of China (863 Plan) (Grant No. 2002AA303260), and Basic Scientific Research of Nankai University in the 2019 Project
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotechnol. 9 927Google Scholar

    [4]

    Mei Y, Zhang C, Vardeny Z V, Jurchescu O D 2015 MRS Commun. 5 297Google Scholar

    [5]

    Park C B, Kim K M, Lee J E, Na H I, Yoo S S, Yang M S 2014 Org. Electron. 15 3538Google Scholar

    [6]

    Takeya J, Yamagishi M, Tominari Y, Nakazawa Y 2007 Solid-State Electron. 51 1338Google Scholar

    [7]

    Robert F 2000 Science 287 415Google Scholar

    [8]

    Chiarella F, Ferro P, Licci F, et al. 2007 Appl. Phys. A: Mater. Sci. Process. A86 89Google Scholar

    [9]

    Feng L, Chun M, Hong W, Wei J H, Wei L Y, Arif D S, Tom W 2015 Nat. Commun. 6 8238Google Scholar

    [10]

    Yusoff A R B M, Kim H P, Li X, Kim J, Jang J, Nazeeruddin M K 2017 Adv. Mater. 29 1602940Google Scholar

    [11]

    Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar

    [12]

    Chin X Y, Cortecchia D, Yin J, Bruno A, Soci C 2015 Nat. Commun. 6 7383Google Scholar

    [13]

    Labram J G, Fabini D H, Perry E E, et al. 2015 J. Phys. Chem. Lett. 6 3565Google Scholar

    [14]

    Smith I C, Hoke E T, Solis‐Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. Int. Ed. 53 11232Google Scholar

    [15]

    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar

    [16]

    Saparov B, Mitzi D B 2016 Chem. Rev. 116 4558Google Scholar

    [17]

    Yang S, Niu W, Wang A L, Fan Z, Chen B, Tan C, Lu Q, Zhang H 2017 Angew. Chem. Int. Ed. 56 4252Google Scholar

    [18]

    Wang Y, Liu X, Li L, Ji C, Sun Z, Han S, Tao K, Luo J 2019 Chem. Asian J. 14 1530Google Scholar

    [19]

    Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar

    [20]

    Matsushima T, Mathevet F, Heinrich B, et al. 2016 Appl. Phys. Lett. 109 253301Google Scholar

    [21]

    Zhu H, Liu A, Luque H L, Sun H, Ji D, Noh Y Y 2019 Acs Nano. 13 3971Google Scholar

    [22]

    Ahmad S, Fu P, Yu S, Yang Q, Liu X, Wang X, Wang X, Guo X, Li C 2019 Joule 3 794Google Scholar

    [23]

    陈皓然, 夏英东, 陈永华, 黄维 2018 材料导报 32 1Google Scholar

    Chen H R, Xia Y D, Chen Y H, Huang W 2018 Materials Reports 32 1Google Scholar

    [24]

    张琦忠 2018 硕士学位论文 (合肥: 中国科学技术大学)

    Zhang Q 2018 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [25]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [26]

    Cheng Z, Lin J 2010 Crystengcomm 12 2646Google Scholar

    [27]

    Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [28]

    Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051.1

    [29]

    Peng Y, Tang L, Zhou Z, Xu J, Li J, Cai H, Ni J, Zhang J 2018 J. Phys. D: Appl. Phys. 51 445101Google Scholar

    [30]

    Soe C M M, Nagabhushana G P, Shivaramaiah R, et al. 2018 Proc. Natl. Acad. Sci. 116 58

  • 图 1  (a) 不同维度钙钛矿成膜工艺示意图; (b) 底栅顶接触钙钛矿TFTs器件结构示意图

    Figure 1.  (a) Synthesis of perovskite film with different dimensions; (b) schematic structure of TFT based on perovskite with a typical structure of bottom-gate, top-contact TFT.

    图 2  不同维度钙钛矿结构示意图

    Figure 2.  Schematic of perovskite structures with different dimensions

    图 3  不同维度钙钛矿薄膜扫描电子显微镜图 (a)纯二维; (b) n = 3的准二维; (c) n = 6的准二维; (d) 三维钙钛矿. 扫描电子显微镜图比例尺为1 μm

    Figure 3.  SEM images of perovskite films with different dimensions (a) Pure-2D; (b) Quasi-2D (n = 3); (c) Quasi-2D (n = 6); (d) 3D. The scale bar is 1 μm for the SEM images.

    图 4  不同维度钙钛矿薄膜表面原子力显微镜图 (a) 纯二维; (b) n = 3的准二维; (c) n = 6的准二维; (d) 三维钙钛矿. 原子力显微镜图比例尺为5μm

    Figure 4.  Top-surface AFM images of perovskite films with different dimensions: (a) Pure-2D; (b) quasi-2D (n = 3); (c) quasi-2D (n = 6); (d) 3D. The scale bar is 5 μm for the AFM images.

    图 5  不同维度钙钛矿薄膜的XRD图谱

    Figure 5.  XRD patterns of perovskite films with different dimensions.

    图 6  不同维度钙钛矿薄膜 (a) 归一化稳态光致发光光谱; (b) 时间分辨光致发光光谱

    Figure 6.  (a) Normalized PL (b) time-resolved PL spectra of perovskite films with different dimensions.

    图 7  不同维度钙钛矿薄膜的水接触角 (a) 纯二维; (b) n = 3的准二维; (c) n = 6的准二维; (d) 三维钙钛矿; (e) 不同维度钙钛矿在30%湿度的空气环境下暴露前后对比图

    Figure 7.  Water contact angle of perovskite films with different dimensions: (a) Pure-2D; (b) Quasi-2D (n = 3); (c) Quasi-2D (n = 6); (d) 3D; (e) images of perovskite films with different dimensions before and after exposed to 30% humidity of the ambient environment.

    图 8  基于不同维度钙钛矿的薄膜晶体管器件转移特性曲线 (a)Ids-Vg; (b) $ I_{\rm ds}^{1/2} $-Vg 对比图

    Figure 8.  A comparison of typical transfer characteristic curve of the TFT devices based on the perovskite with different dimensions: (a) Ids-Vg; (b) $ I_{\rm ds}^{1/2} $-Vg, respectively.

    图 9  (a) n = 20的准二维; (b) n = 30的准二维钙钛矿扫描电子显微镜图; (c) n = 20的准二维; (d) n = 30 的准二维钙钛矿原子力显微镜图. 扫描电子显微镜比例尺为500 nm; 原子力显微镜比例尺为5 μm

    Figure 9.  SEM images of perovskite films (a) Quasi-2D (n=20); b) Quasi-2D (n=30). The scale bar is 500 nm for the SEM images and 5 μm for the AFM images.

    表 1  不同维度钙钛矿TRPL衰减曲线拟合的时间常数和振幅

    Table 1.  Time constant and amplitude of perovskites with different dimensions by fitting the TRPL decay curves.

    PEA2MAn-1PbnI3 n+1A1τ1/nsA2τ2/nsτave/ns
    n = 1
    n = 3572.018.366.9125.2101.9
    n = 6520.931.2306.2236.6198.9
    n = ∞347.66.277.1644.329.5
    DownLoad: CSV

    表 2  不同维度钙钛矿薄膜的水接触角

    Table 2.  Summary of water contact angle of perovskite films with different dimensions

    Pure-2DQuasi-2D (n = 3) Quasi-2D (n = 6) 3D
    Water contact angle/(°) 75.31 64.70 61.66 38.88
    DownLoad: CSV

    表 3  基于不同维度钙钛矿的薄膜晶体管器件的相关性能参数

    Table 3.  Summary of related performance parameters of TFT devices based on the perovskite with different dimensions.

    Perovskite
    style
    μhole/cm2·(V·s)–1Ion/IoffVth/VSS/V·dec–1
    Pure-2D7.2×10–21052.300.11
    Quasi-2D
    (n = 3)
    2.901053.100.60
    Quasi-2D
    (n = 6)
    3.901051.851.10
    Quasi-2D
    (n = 20)
    0.791050.441.25
    Quasi-2D
    (n = 30)
    0.271050.701.60
    3D0.301040.600.14
    DownLoad: CSV
  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Lee M M, Teuscher J, Miyasaka T, Murakami T N, Snaith H J 2012 Science 338 643Google Scholar

    [3]

    Im J H, Jang I H, Pellet N, Grätzel M, Park N G 2014 Nat. Nanotechnol. 9 927Google Scholar

    [4]

    Mei Y, Zhang C, Vardeny Z V, Jurchescu O D 2015 MRS Commun. 5 297Google Scholar

    [5]

    Park C B, Kim K M, Lee J E, Na H I, Yoo S S, Yang M S 2014 Org. Electron. 15 3538Google Scholar

    [6]

    Takeya J, Yamagishi M, Tominari Y, Nakazawa Y 2007 Solid-State Electron. 51 1338Google Scholar

    [7]

    Robert F 2000 Science 287 415Google Scholar

    [8]

    Chiarella F, Ferro P, Licci F, et al. 2007 Appl. Phys. A: Mater. Sci. Process. A86 89Google Scholar

    [9]

    Feng L, Chun M, Hong W, Wei J H, Wei L Y, Arif D S, Tom W 2015 Nat. Commun. 6 8238Google Scholar

    [10]

    Yusoff A R B M, Kim H P, Li X, Kim J, Jang J, Nazeeruddin M K 2017 Adv. Mater. 29 1602940Google Scholar

    [11]

    Lin Y, Bai Y, Fang Y, Wang Q, Deng Y, Huang J 2017 ACS Energy Lett. 2 1571Google Scholar

    [12]

    Chin X Y, Cortecchia D, Yin J, Bruno A, Soci C 2015 Nat. Commun. 6 7383Google Scholar

    [13]

    Labram J G, Fabini D H, Perry E E, et al. 2015 J. Phys. Chem. Lett. 6 3565Google Scholar

    [14]

    Smith I C, Hoke E T, Solis‐Ibarra D, McGehee M D, Karunadasa H I 2014 Angew. Chem. Int. Ed. 53 11232Google Scholar

    [15]

    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G 2015 J. Am. Chem. Soc. 137 7843Google Scholar

    [16]

    Saparov B, Mitzi D B 2016 Chem. Rev. 116 4558Google Scholar

    [17]

    Yang S, Niu W, Wang A L, Fan Z, Chen B, Tan C, Lu Q, Zhang H 2017 Angew. Chem. Int. Ed. 56 4252Google Scholar

    [18]

    Wang Y, Liu X, Li L, Ji C, Sun Z, Han S, Tao K, Luo J 2019 Chem. Asian J. 14 1530Google Scholar

    [19]

    Kagan C R, Mitzi D B, Dimitrakopoulos C D 1999 Science 286 945Google Scholar

    [20]

    Matsushima T, Mathevet F, Heinrich B, et al. 2016 Appl. Phys. Lett. 109 253301Google Scholar

    [21]

    Zhu H, Liu A, Luque H L, Sun H, Ji D, Noh Y Y 2019 Acs Nano. 13 3971Google Scholar

    [22]

    Ahmad S, Fu P, Yu S, Yang Q, Liu X, Wang X, Wang X, Guo X, Li C 2019 Joule 3 794Google Scholar

    [23]

    陈皓然, 夏英东, 陈永华, 黄维 2018 材料导报 32 1Google Scholar

    Chen H R, Xia Y D, Chen Y H, Huang W 2018 Materials Reports 32 1Google Scholar

    [24]

    张琦忠 2018 硕士学位论文 (合肥: 中国科学技术大学)

    Zhang Q 2018 M. S. Thesis (Hefei: University of Science and Technology of China) (in Chinese)

    [25]

    Tsai H, Nie W, Blancon J C, et al. 2016 Nature 536 312Google Scholar

    [26]

    Cheng Z, Lin J 2010 Crystengcomm 12 2646Google Scholar

    [27]

    Zhang F, Lu H, Tong J, Berry J J, Beard M C, Zhu K 2020 Energy Environ. Sci. 13 1154Google Scholar

    [28]

    Zheng H, Liu G, Zhu L, Ye J, Zhang X, Alsaedi A, Hayat T, Pan X, Dai S 2018 Adv. Energy Mater. 8 1800051.1

    [29]

    Peng Y, Tang L, Zhou Z, Xu J, Li J, Cai H, Ni J, Zhang J 2018 J. Phys. D: Appl. Phys. 51 445101Google Scholar

    [30]

    Soe C M M, Nagabhushana G P, Shivaramaiah R, et al. 2018 Proc. Natl. Acad. Sci. 116 58

  • [1] Zhao Ze-Xian, Xu Meng, Peng Cong, Zhang Han, Chen Long-Long, Zhang Jian-Hua, Li Xi-Feng. Inkjet printing high mobility indium-zinc-tin oxide thin film transistor. Acta Physica Sinica, 2024, 73(12): 128501. doi: 10.7498/aps.73.20240361
    [2] Liu Si-Wen, Ren Li-Zhi, Jin Bo-Wen, Song Xin, Wu Cong-Cong. Preparation of two-dimensional perovskite layer by solution method for improving stability of FAPbI3 perovskite solar cells. Acta Physica Sinica, 2024, 73(6): 068801. doi: 10.7498/aps.73.20231678
    [3] Liu Xian-Zhe, Zhang Xu, Tao Hong, Huang Jian-Lang, Huang Jiang-Xia, Chen Yi-Tao, Yuan Wei-Jian, Yao Ri-Hui, Ning Hong-Long, Peng Jun-Biao. Research progress of tin oxide-based thin films and thin-film transistors prepared by sol-gel method. Acta Physica Sinica, 2020, 69(22): 228102. doi: 10.7498/aps.69.20200653
    [4] Liang Ding-Kang,  Chen Yi-Hao,  Xu Wei,  Ji Xin-Cun,  Tong Yi,  Wu Guo-Dong. Ultralow-voltage albumen-gated electric-double-layer thin film transistors. Acta Physica Sinica, 2018, 67(23): 237302. doi: 10.7498/aps.67.20181539
    [5] Shao Yan, Ding Shi-Jin. Effects of hydrogen impurities on performances and electrical reliabilities of indium-gallium-zinc oxide thin film transistors. Acta Physica Sinica, 2018, 67(9): 098502. doi: 10.7498/aps.67.20180074
    [6] Qin Ting, Huang Sheng-Xiang, Liao Cong-Wei, Yu Tian-Bao, Luo Heng, Liu Sheng, Deng Lian-Wen. Floating gate effect in amorphous InGaZnO thin-film transistor. Acta Physica Sinica, 2018, 67(4): 047302. doi: 10.7498/aps.67.20172325
    [7] Liu Yuan, He Hong-Yu, Chen Rong-Sheng, Li Bin, En Yun-Fei, Chen Yi-Qiang. Low-frequency noise in hydrogenated amorphous silicon thin film transistor. Acta Physica Sinica, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [8] Lan Lin-Feng, Zhang Peng, Peng Jun-Biao. Research progress on oxide-based thin film transisitors. Acta Physica Sinica, 2016, 65(12): 128504. doi: 10.7498/aps.65.128504
    [9] Wang Jing, Liu Yuan, Liu Yu-Rong, Wu Wei-Jing, Luo Xin-Yue, Liu Kai, Li Bin, En Yun-Fei. Extraction of density of localized states in indium zinc oxide thin film transistor. Acta Physica Sinica, 2016, 65(12): 128501. doi: 10.7498/aps.65.128501
    [10] Zhu Le-Yong, Gao Ya-Na, Zhang Jian-Hua, Li Xi-Feng. High mobility thin-film transistor with solution-processed hafnium-oxide dielectric and zinc-indium-tin-oxide semiconductor. Acta Physica Sinica, 2015, 64(16): 168501. doi: 10.7498/aps.64.168501
    [11] Xu Hua, Lan Lin-Feng, Li Min, Luo Dong-Xiang, Xiao Peng, Lin Zhen-Guo, Ning Hong-Long, Peng Jun-Biao. Effect of source/drain preparation on the performance of oxide thin-film transistors. Acta Physica Sinica, 2014, 63(3): 038501. doi: 10.7498/aps.63.038501
    [12] Wu Ping, Zhang Jie, Li Xi-Feng, Chen Ling-Xiang, Wang Lei, Lü Jian-Guo. Ultraviolet photoresponse of ZnO thin-film transistor fabricated at room temperature. Acta Physica Sinica, 2013, 62(1): 018101. doi: 10.7498/aps.62.018101
    [13] Li Shuai-Shuai, Liang Chao-Xu, Wang Xue-Xia, Li Yan-Hui, Song Shu-Mei, Xin Yan-Qing, Yang Tian-Lin. The preparation and characteristics research of high mobility amorphous indium gallium zinc oxide thin-film transistors. Acta Physica Sinica, 2013, 62(7): 077302. doi: 10.7498/aps.62.077302
    [14] Zhang Geng-Ming, Guo Li-Qiang, Zhao Kong-Sheng, Yan Zhong-Hui. Effect of oxygen on stability performance of the IZO junctionless thin film transistors. Acta Physica Sinica, 2013, 62(13): 137201. doi: 10.7498/aps.62.137201
    [15] Li Xi-Feng, Xin En-Long, Shi Ji-Feng, Chen Long-Long, Li Chun-Ya, Zhang Jian-Hua. Stability of low temperature and transparent amorphous InGaZnO thin film transistor under illumination. Acta Physica Sinica, 2013, 62(10): 108503. doi: 10.7498/aps.62.108503
    [16] Chen Xiao-Xue, Yao Ruo-He. DC characteristic research based on surface potential for a-Si:H thin-film transistor. Acta Physica Sinica, 2012, 61(23): 237104. doi: 10.7498/aps.61.237104
    [17] Zhao Kong-Sheng, Xuan Rui-Jie, Han Xiao, Zhang Geng-Ming. Junctionless low-voltage thin-film transistors based on indium-tin-oxide. Acta Physica Sinica, 2012, 61(19): 197201. doi: 10.7498/aps.61.197201
    [18] Qiang Lei, Yao Ruo-He. Distributions of the threshold voltage and the temperature in the channel of amorphous silicon thin film transistors. Acta Physica Sinica, 2012, 61(8): 087303. doi: 10.7498/aps.61.087303
    [19] Wang Xiong, Cai Xi-Kun, Yuan Zi-Jian, Zhu Xia-Ming, Qiu Dong-Jiang, Wu Hui-Zhen. Study of zinc tin oxide thin-film transistor. Acta Physica Sinica, 2011, 60(3): 037305. doi: 10.7498/aps.60.037305
    [20] Xu Tian-Ning, Wu Hui-Zhen, Zhang Ying-Ying, Wang Xiong, Zhu Xia-Ming, Yuan Zi-Jian. Fabrication and performance of indium oxide based transparent thin film transistors. Acta Physica Sinica, 2010, 59(7): 5018-5022. doi: 10.7498/aps.59.5018
Metrics
  • Abstract views:  12004
  • PDF Downloads:  257
  • Cited By: 0
Publishing process
  • Received Date:  12 May 2020
  • Accepted Date:  06 June 2020
  • Available Online:  15 June 2020
  • Published Online:  05 October 2020

/

返回文章
返回