Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Terahertz emission from Y3Fe5O12(YIG)/Pt heterostructures via ultrafast spin Seebeck effect

Song Bang-Ju Jin Zuan-Ming Guo Chen-Yang Ruan Shun-Yi Li Ju-Geng Wan Cai-Hua Han Xiu-Feng Ma Guo-Hong Yao Jian-Quan

Citation:

Terahertz emission from Y3Fe5O12(YIG)/Pt heterostructures via ultrafast spin Seebeck effect

Song Bang-Ju, Jin Zuan-Ming, Guo Chen-Yang, Ruan Shun-Yi, Li Ju-Geng, Wan Cai-Hua, Han Xiu-Feng, Ma Guo-Hong, Yao Jian-Quan
PDF
HTML
Get Citation
  • Recently, ferromagnetic/non-magnetic heterostructures have been widely studied for the generation of terahertz (THz) emitter based on spin-to-charge conversion. Actually, thermal spintronics effectively combines thermal transport with magnetism for creating and detecting non-equilibrium spin transport. A spin current or voltage can be induced by a temperature bias applied to a ferromagnetic material, which is called spin Seebeck effect (SSE). In this paper, we present a SSE based THz emission by using the heterostructures made of insulating ferrimagnet yttrium iron garnet (Y3Fe5O12, YIG) and platinum (Pt) with large spin orbit coupling. Upon exciting the Pt layer with a femtosecond laser pulse, a spin Seebeck current arises, applying a temperature gradient to the interface. Based on the inverse spin Hall effect, the spin Seebeck current is converted into a transient charge current and then yields the THz transients, which are detected by electrooptic sampling through using a ZnTe crystal at room temperature. The polarity of the THz pulses is flipped by 180° when the direction of the external magnetic field is reversed. By changing the direction of the pump beam excitation geometry to vary the sign of the temperature gradient at the YIG/Pt interface, the polarity of the THz signal is reversed. Fast Fourier transformation of the THz signals yields the amplitude spectra centered near 0.6 THz with a bandwidth in a range of 0.1–2.5 THz. We systematically investigate the influence of annealing effect on the THz emission from different YIG/Pt heterostructures. It can be found that the THz radiation is achieved to increase ten times in the YIG/Pt grown on a Gd3Ga5O12 (GGG) substrate through high-temperature annealing. The mechanism of annealing effect can be the increase of the spin mixing conductance of the interface between YIG and Pt. Finally, we investigate the pump fluence dependent THz peak-to-peak values for the annealed YIG/Pt grown on the Si substrate. Due to the spin accumulation effect at the interface of the YIG/Pt heterostructure, the THz radiation intensity gradually becomes saturated with the increase of pump fluence. Our results conclude that annealing optimization is of importance for increasing the THz amplitude, and open a new avenue to the future applications of spintronic THz emitters based on ultrafast SSE.
      Corresponding author: Jin Zuan-Ming, physics_jzm@usst.edu.cn ; Wan Cai-Hua, wancaihua@iphy.ac.cn ; Ma Guo-Hong, ghma@staff.shu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975110, 11674213, 61735010, 11604202), the Shanghai Rising-Star Program of Science and Technology Commission of Shanghai Municipality, China (Grant No. 18QA1401700), the Chen Guang Project of Shanghai Educational Development Foundation, China (Grant No. 16CG45), and the Young Eastern Scholar Project ofShanghai Municipal Education Commission, China (Grant No. QD2015020)
    [1]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [2]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S D, Hoffmann. A 2010 Phys. Rev. Lett. 104 046601Google Scholar

    [3]

    Demidov V E, Urazhdin S, Ulrichs H, et al. 2012 Nat. Mater. 11 1028Google Scholar

    [4]

    Hirsh J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [5]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [6]

    Maekawa S, Adachi H. Uchida A, Ieda K, Saitoh J E 2013 J. Phys. Soc. Jpn. 82 102002Google Scholar

    [7]

    韩方彬, 张文旭, 彭斌, 张万里 2015 物理学报 24 247202Google Scholar

    Han F B, Zhang W X, Peng B, Zhang W L 2015 Acta Phys. Sin. 24 247202Google Scholar

    [8]

    Kampfrath T, Battiato M, Maldonado P, et al. 2013 Nat. Nanotechnol. 8 256Google Scholar

    [9]

    Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photon. 10 483Google Scholar

    [10]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [11]

    Eschenlohr A, Battiato M, Maldonad P, et al. 2013 Nat. Mater. 12 332Google Scholar

    [12]

    Melnikov A, Razdolski I, Wehling T O, et al. 2011 Phys. Rev. Lett. 107 076601Google Scholar

    [13]

    Rudolf D, Chan L O, Battiato M, et al. 2012 Nature Commun. 3 1037Google Scholar

    [14]

    Wang X, Cheng L, Zhu D, et al. 2018 Adv. Opt. Mater. 30 1802356Google Scholar

    [15]

    Cheng L, Wang X B, Yang W F, et al. 2019 Nat. Phys. 15 347Google Scholar

    [16]

    Zhou X, Song B, Chen X, et al. 2019 Appl. Phys. Lett. 115 182402Google Scholar

    [17]

    Bauer G E W, Saitoh E, van Wees B J 2012 Nat. Mater. 11 391Google Scholar

    [18]

    Wolf S A, Awschalom D D, Buhrman R A, et al. 2001 Science 294 1488Google Scholar

    [19]

    Kikkawa T, Uchida K, Shiomi Y, et al. 2013 Phys. Rev. Lett. 110 067207Google Scholar

    [20]

    Bosu S, Sakuraba Y, Uchida K, Saito K, Ota T, Saitoh E, Takanashi K 2011 Phys. Rev. B 83 224401Google Scholar

    [21]

    Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P, Myers R C 2010 Nat. Mater. 9 898Google Scholar

    [22]

    Uchida K, Xiao J, Adachi H, et al. 2010 Nat. Mater. 9 894Google Scholar

    [23]

    Uchida K, Nonaka T, Ota T, Nakayama H, Saitoh E 2010 Appl. Phys. Lett. 97 262504Google Scholar

    [24]

    Bai H, Zhan X Z, Li G, Su J, Zhu Z Z, Zhang Y, Zhu T, Cai J W 2019 Appl. Phys. Lett. 115 182401Google Scholar

    [25]

    Kajiwara Y, Harii K, Takahashi S, et al. 2010 Nature 464 262Google Scholar

    [26]

    Nakayama H, Althammer M, Chen Y T, et al. 2013 Phys. Rev. Lett. 110 206601Google Scholar

    [27]

    Jia X, Liu K, Xia K, Bauer G E W 2011 Europhys. Lett. 96 17005Google Scholar

    [28]

    Jungfleisch M B, Chumak A V, Kehlberger A, et al. 2015 Phys. Rev. B 91 134407Google Scholar

    [29]

    Geprags S, Meyer S, Altmannshofer S, et al. 2012 Appl. Phys. Lett. 101 262407Google Scholar

    [30]

    Seifert T S, Jaiswal S, Barker J, et al. 2018 Nat. Commun. 9 2899Google Scholar

    [31]

    Xiao J, Bauer G E W, Uchida K C, Saitoh E, Maekawa S 2010 Phys. Rev. B 81 214418Google Scholar

    [32]

    Lu W T, Zhao Y W, Battiato M, Wu Y Z, Yuan Z 2020 Phys. Rev. B 101 014435Google Scholar

    [33]

    张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨 2018 物理学报 67 197202Google Scholar

    Zhang S N, Zhu W H, Li J G, Jin Z M, Dai Y, Zhang Z Z, Ma G H, Yao J Q 2018 Acta Phys. Sin. 67 197202Google Scholar

    [34]

    Wu S M, Pearson J E, Bhattacharya A 2015 Phys. Rev. Let. 114 186602Google Scholar

    [35]

    Saiga Y, Mizunuma K, Kono Y, Ryu J C, Ono H, Kohda M, Okuno E 2014 Appl. Phys. Express 7 093001Google Scholar

    [36]

    Jacob K T, Rajitha G 2012 Solid State Ionics 224 32Google Scholar

    [37]

    Jin Z, Zhang S, Zhu W, et al. 2019 Phys. Status Solidi RRL 13 1900057Google Scholar

    [38]

    Song B, Song Y, Zhang S, et al. 2019 Appl. Phys. Express 12 122003Google Scholar

    [39]

    Torosyan1 G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [40]

    Barnes M E, Berry S A, Gow P, et al. 2013 Opt. Express 21 16263Google Scholar

    [41]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2018 J. Phys. D: Appl. Phys. 51 034001Google Scholar

  • 图 1  (a) THz发射光谱实验装置图; (b) 在YIG/Pt双层膜结构中, 沿z轴方向外加面内磁场H = ± 200 mT, 飞秒激光诱导铁磁绝缘体和非磁性金属界面产生瞬态温度梯度$ \nabla T $(沿着–y轴; 红色表示高温, 蓝色表示低温), 超快SSE产生一个从YIG进入Pt层的自旋流(沿着–y轴), 基于ISHE, 在–x轴方向上产生瞬态电荷流; (c) 样品GGG//Pt(10)和GGG//YIG(60)/Pt(10)双层膜的THz辐射信号, +N和–N分别表示激光脉冲从Pt膜一侧和GGG衬底一侧辐照样品; (d), (e), (f) 分别表示(c)中GGG//Pt(10)和GGG//YIG(60)/Pt(10)的3种激发构置下的THz辐射原理图

    Figure 1.  (a) Schematic of experimental setup for THz generation; (b) schematic of the YIG/Pt bilayer sample placed in the static in-plane magnetic field of ± 200 mT. A femtosecond laser pulse excites the YIG/Pt bilayer, a temperature gradient $ \nabla T $is created at the interface of ferromagnetic insulator YIG and nonmagnetic metal Pt, launching a spin current (along the –y direction; the red part means the high temperature side and the blue part describes the low temperature side) from YIG layer into the Pt layer based on the SSE. Within the Pt layer, the spin current is converted into a charge current (along the –x direction) via ISHE; (c) measured electrooptic signal of THz emission from GGG//Pt(10) and GGG//YIG(60)/Pt(10) bilayer. THz emission signals are radiated with front (+N, red) and back (–N, blue) pumps; (d), (e), (f) the THz emission schematics of the three sample cases in (c).

    图 2  (a) GGG//YIG(40)/Pt(3), Si//YIG(40)/Pt(3), GGG//YIG(40)/Pt(3), Si//YIG(40)/Pt(3), GGG//YIG(40)/Pt1st(3)/Pt2nd(3)和Si//YIG(40)/Pt1st(3)/Pt2nd(3)不同结构样品所产生的THz辐射脉冲; (b) 飞秒激光脉冲激发YIG/Pt1st/Pt2nd结构辐射THz信号示意图; (c) 将图 (a) 中GGG//YIG(40)/Pt1st(3)/Pt2nd(3)和Si//YIG(40)/Pt1st(3)/Pt2nd(3)的时域谱线进行傅里叶变换后的归一化频谱图, 插图为THz发射光谱的半高全宽(ΔF)和中心频率(fc)

    Figure 2.  (a) THz emitted EOS waveforms of GGG//YIG(40)/Pt(3), Si//YIG(40)/Pt(3), GGG//YIG(40)/Pt(3), Si//YIG(40)/Pt(3), GGG//YIG(40)/Pt1st(3)/Pt2nd(3) and Si//YIG(40)/Pt1st(3)/Pt2nd(3) heterostructures (layer thickness in nm); (b) schematic view of THz generation in YIG(40)/Pt1st(3)/Pt2nd(3) heterostructures on GGG and Si substrates via SSE; (c) normalized frequency-domain THz signals of GGG//YIG(40)/Pt1st(3)/Pt2nd(3) and Si//YIG(40)/Pt1st(3)/Pt2nd(3) heterostructures. Inset: the full width at half maximum (ΔF) and center frequency (fc) for the normalized THz amplitude spectrum.

    图 3  (a) 外加磁场+H (蓝线)和–H (红线)时, GGG//YIG(40)/Pt1st(3)/Pt2nd(3)结构辐射的THz脉冲; (b) GGG//YIG(40)/Pt1st(3)/Pt2nd(3)结构在不同激光激发构置下产生的THz脉冲, 此时外加磁场固定为+H, 插图为飞秒脉冲激发样品的方向

    Figure 3.  (a) THz signals emitted from the GGG//YIG(40)/Pt1st(3)/Pt2nd(3) bilayers applied with +H (blue line) and –H (red line); (b) THz emission signals with front- (blue line) and back- (orange line) pumps with +H. Insets: Schematic view of the laser pulse exciting the sample from the different sides.

    图 4  Si//YIG(40)/Pt1st(3)/Pt2nd(3)异质结构所产生的THz脉冲峰峰值与入射光能量密度的依赖关系. 图中紫色圆圈为实验数据点, 黑色曲线为拟合结果

    Figure 4.  Peak-to-peak values of THz radiation from Si//YIG(40)/Pt1st(3)/Pt2nd(3) as a function of incident pump fluence. Purple circles: experimental data; black curve: fit line

    表 1  5种不同结构样品的制备过程及其归一化THz振幅对比

    Table 1.  Preparation processes of five different sample structures and their normalized THz amplitudes.

    样品
    序号
    样品结构(厚度/nm)生长步骤归一化THz振幅
    (强度/arb. units )
    GGG//Pt(10)沉积Pt膜0
    GGG//YIG(60)/Pt(10)沉积YIG膜, 沉积Pt膜0.076
    GGG//YIG(40)/Pt(3), Si//YIG(40)/Pt(3)沉积YIG膜, YIG膜退火, 沉积Pt膜0.075, 0.045
    GGG//YIG(40)/Pt(3), Si//YIG(40)/Pt(3)沉积YIG膜, 沉积Pt膜, YIG/Pt双层膜退火0, 0
    GGG//YIG(40)/Pt1st(3)/Pt2nd(3),
    Si//YIG(40)/Pt1st(3)/Pt2nd(3)
    沉积YIG膜, 沉积Pt膜 (1st), YIG/Pt双层膜
    退火, 沉积Pt膜 (2nd)
    1.000, 0.121
    DownLoad: CSV
  • [1]

    Saitoh E, Ueda M, Miyajima H, Tatara G 2006 Appl. Phys. Lett. 88 182509Google Scholar

    [2]

    Mosendz O, Pearson J E, Fradin F Y, Bauer G E W, Bader S D, Hoffmann. A 2010 Phys. Rev. Lett. 104 046601Google Scholar

    [3]

    Demidov V E, Urazhdin S, Ulrichs H, et al. 2012 Nat. Mater. 11 1028Google Scholar

    [4]

    Hirsh J E 1999 Phys. Rev. Lett. 83 1834Google Scholar

    [5]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [6]

    Maekawa S, Adachi H. Uchida A, Ieda K, Saitoh J E 2013 J. Phys. Soc. Jpn. 82 102002Google Scholar

    [7]

    韩方彬, 张文旭, 彭斌, 张万里 2015 物理学报 24 247202Google Scholar

    Han F B, Zhang W X, Peng B, Zhang W L 2015 Acta Phys. Sin. 24 247202Google Scholar

    [8]

    Kampfrath T, Battiato M, Maldonado P, et al. 2013 Nat. Nanotechnol. 8 256Google Scholar

    [9]

    Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photon. 10 483Google Scholar

    [10]

    Battiato M, Carva K, Oppeneer P M 2010 Phys. Rev. Lett. 105 027203Google Scholar

    [11]

    Eschenlohr A, Battiato M, Maldonad P, et al. 2013 Nat. Mater. 12 332Google Scholar

    [12]

    Melnikov A, Razdolski I, Wehling T O, et al. 2011 Phys. Rev. Lett. 107 076601Google Scholar

    [13]

    Rudolf D, Chan L O, Battiato M, et al. 2012 Nature Commun. 3 1037Google Scholar

    [14]

    Wang X, Cheng L, Zhu D, et al. 2018 Adv. Opt. Mater. 30 1802356Google Scholar

    [15]

    Cheng L, Wang X B, Yang W F, et al. 2019 Nat. Phys. 15 347Google Scholar

    [16]

    Zhou X, Song B, Chen X, et al. 2019 Appl. Phys. Lett. 115 182402Google Scholar

    [17]

    Bauer G E W, Saitoh E, van Wees B J 2012 Nat. Mater. 11 391Google Scholar

    [18]

    Wolf S A, Awschalom D D, Buhrman R A, et al. 2001 Science 294 1488Google Scholar

    [19]

    Kikkawa T, Uchida K, Shiomi Y, et al. 2013 Phys. Rev. Lett. 110 067207Google Scholar

    [20]

    Bosu S, Sakuraba Y, Uchida K, Saito K, Ota T, Saitoh E, Takanashi K 2011 Phys. Rev. B 83 224401Google Scholar

    [21]

    Jaworski C M, Yang J, Mack S, Awschalom D D, Heremans J P, Myers R C 2010 Nat. Mater. 9 898Google Scholar

    [22]

    Uchida K, Xiao J, Adachi H, et al. 2010 Nat. Mater. 9 894Google Scholar

    [23]

    Uchida K, Nonaka T, Ota T, Nakayama H, Saitoh E 2010 Appl. Phys. Lett. 97 262504Google Scholar

    [24]

    Bai H, Zhan X Z, Li G, Su J, Zhu Z Z, Zhang Y, Zhu T, Cai J W 2019 Appl. Phys. Lett. 115 182401Google Scholar

    [25]

    Kajiwara Y, Harii K, Takahashi S, et al. 2010 Nature 464 262Google Scholar

    [26]

    Nakayama H, Althammer M, Chen Y T, et al. 2013 Phys. Rev. Lett. 110 206601Google Scholar

    [27]

    Jia X, Liu K, Xia K, Bauer G E W 2011 Europhys. Lett. 96 17005Google Scholar

    [28]

    Jungfleisch M B, Chumak A V, Kehlberger A, et al. 2015 Phys. Rev. B 91 134407Google Scholar

    [29]

    Geprags S, Meyer S, Altmannshofer S, et al. 2012 Appl. Phys. Lett. 101 262407Google Scholar

    [30]

    Seifert T S, Jaiswal S, Barker J, et al. 2018 Nat. Commun. 9 2899Google Scholar

    [31]

    Xiao J, Bauer G E W, Uchida K C, Saitoh E, Maekawa S 2010 Phys. Rev. B 81 214418Google Scholar

    [32]

    Lu W T, Zhao Y W, Battiato M, Wu Y Z, Yuan Z 2020 Phys. Rev. B 101 014435Google Scholar

    [33]

    张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨 2018 物理学报 67 197202Google Scholar

    Zhang S N, Zhu W H, Li J G, Jin Z M, Dai Y, Zhang Z Z, Ma G H, Yao J Q 2018 Acta Phys. Sin. 67 197202Google Scholar

    [34]

    Wu S M, Pearson J E, Bhattacharya A 2015 Phys. Rev. Let. 114 186602Google Scholar

    [35]

    Saiga Y, Mizunuma K, Kono Y, Ryu J C, Ono H, Kohda M, Okuno E 2014 Appl. Phys. Express 7 093001Google Scholar

    [36]

    Jacob K T, Rajitha G 2012 Solid State Ionics 224 32Google Scholar

    [37]

    Jin Z, Zhang S, Zhu W, et al. 2019 Phys. Status Solidi RRL 13 1900057Google Scholar

    [38]

    Song B, Song Y, Zhang S, et al. 2019 Appl. Phys. Express 12 122003Google Scholar

    [39]

    Torosyan1 G, Keller S, Scheuer L, Beigang R, Papaioannou E T 2018 Sci. Rep. 8 1311Google Scholar

    [40]

    Barnes M E, Berry S A, Gow P, et al. 2013 Opt. Express 21 16263Google Scholar

    [41]

    Zhang S, Jin Z, Zhu Z, Zhu W, Zhang Z, Ma G, Yao J 2018 J. Phys. D: Appl. Phys. 51 034001Google Scholar

  • [1] Li Han-Nan, Peng Yan. Theoretical study of influence of laser pulse chirp on terahertz emission characteristics of gas induced by two-color laser field. Acta Physica Sinica, 2024, 73(6): 060701. doi: 10.7498/aps.73.20231806
    [2] Cheng Hong-Yang, Ma Qian-Ru, Xu Hao-Ran, Zhang Hui-Ping, Jin Zuan-Ming, He Wei, Peng Yan. Terahertz emission characterization of silicon based ferromagnetic heterostructures. Acta Physica Sinica, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [3] Wei Gao-Shuai, Zhang Hui, Wu Xiao-Jun, Zhang Hong-Rui, Wang Chun, Wang Bo, Wang Li, Sun Ji-Rong. Terahertz emission from LaAlO3/SrTiO3 heterostructures pumped with femtosecond laser. Acta Physica Sinica, 2022, 71(9): 090702. doi: 10.7498/aps.71.20201139
    [4] Zhang Fan, Xu Yong, Liu Yang, Cheng Hou-Yi, Zhang Xiao-Qiang, Du Yin-Chang, Wu Xiao-Jun, Zhao Wei-Sheng. Terahertz emission generated from Bi2Te3/CoFeB heterostructures grown by magnetron sputtering. Acta Physica Sinica, 2020, 69(20): 200705. doi: 10.7498/aps.69.20200634
    [5] Li Xiao-Lu, Bai Ya, Liu Peng. Control of the terahertz spectra generated from laser induced plasma. Acta Physica Sinica, 2020, 69(2): 024205. doi: 10.7498/aps.69.20191200
    [6] Jiazila Hasaien, Zhu Ke-Jia, Sun Fei, Wu Yan-Ling, Shi You-Guo, Zhao Ji-Min. Generation and control of photo-excited thermal currents in triple degenerate topological semimetal MoP with circularly polarized ultrafast light pulses. Acta Physica Sinica, 2020, 69(20): 207801. doi: 10.7498/aps.69.20200031
    [7] Jiang Cong-Ying, Sun Fei, Feng Zi-Li, Liu Shi-Bing, Shi You-Guo, Zhao Ji-Min. Time-resolved ultrafast dynamics in triple degenerate topological semimetal molybdenum phosphide. Acta Physica Sinica, 2020, 69(7): 077801. doi: 10.7498/aps.69.20191816
    [8] Su Yu-Lun, Wei Zheng-Xing, Cheng Liang, Qi Jing-Bo. Terahertz emitters based on ultrafast spin-to-charge conversion. Acta Physica Sinica, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [9] He Dong-Mei, Peng Bin, Zhang Wan-Li, Zhang Wen-Xu. Inverse spin Hall effect in Nb doped SrTiO3. Acta Physica Sinica, 2019, 68(10): 106101. doi: 10.7498/aps.68.20190118
    [10] Wang Wei-Min, Zhang Liang-Liang, Li Yu-Tong, Sheng Zheng-Ming, Zhang Jie. Theoretical and experimental studies on terahertz radiation from laser-driven air plasma. Acta Physica Sinica, 2018, 67(12): 124202. doi: 10.7498/aps.67.20180564
    [11] Lin Xian,  Jin Zuan-Ming,  Li Ju-Geng,  Guo Fei-Yun,  Zhuang Nai-Feng,  Chen Jian-Zhong,  Dai Ye,  Yan Xiao-Na,  Ma Guo-Hong. Ultrafast polarization modulation of laser pulses at terahertz frequencies via optical Kerr effect. Acta Physica Sinica, 2018, 67(23): 237801. doi: 10.7498/aps.67.20181450
    [12] Zhang Shun-Nong, Zhu Wei-Hua, Li Ju-Geng, Jin Zuan-Ming, Dai Ye, Zhang Zong-Zhi, Ma Guo-Hong, Yao Jian-Quan. Coherent terahertz radiation via ultrafast manipulation of spin currents in ferromagnetic heterostructures. Acta Physica Sinica, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [13] Li Shu-Lei, Liu Lei, Gao Tai-Chang, Huang Wei, Hu Shuai. Sensitivity analysis of terahertz wave passive remote sensing of cirrus microphysical parameters. Acta Physica Sinica, 2016, 65(13): 134102. doi: 10.7498/aps.65.134102
    [14] Zhu Wei-Wei, Zhang Qiu-Ju, Zhang Yan-Hui, Jiao Yang. Motion-induced X-ray and terahertz radiation of electrons captured in laser standing wave. Acta Physica Sinica, 2015, 64(12): 124104. doi: 10.7498/aps.64.124104
    [15] Han Fang-Bin, Zhang Wen-Xu, Peng Bin, Zhang Wan-Li. Angle dependent inverse spin Hall effect in NiFe/Pt thin film. Acta Physica Sinica, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [16] Zhang Kai-Yun, Du Hai-Wei, Chen Min, Sheng Zheng-Ming. Studies on the optimization of terahertz emission based on the field ionization current model. Acta Physica Sinica, 2012, 61(16): 160701. doi: 10.7498/aps.61.160701
    [17] Qi Chun-Chao, Ouyang Zheng-Biao. Comprehensive Survey for the Frontier Disciplines Latest advances in THz coherent light source pumped by 600—2000 nm waveband pumped source. Acta Physica Sinica, 2011, 60(9): 090704. doi: 10.7498/aps.60.090704
    [18] Zhong Kai, Yao Jian-Quan, Xu De-Gang, Zhang Hui-Yun, Wang Peng. Theoretical research on cascaded difference frequency generation of terahertz radiation. Acta Physica Sinica, 2011, 60(3): 034210. doi: 10.7498/aps.60.034210
    [19] Huang Nan, Li Xue-Feng, Liu Hong-Jun, Xia Cai-Peng. Effects of gain saturation in terahertz radiation based on difference frequency generation. Acta Physica Sinica, 2009, 58(12): 8326-8331. doi: 10.7498/aps.58.8326
    [20] Deng Yu-Qiang, Lang Li-Ying, Xing Qi-Rong, Cao Shi-Ying, Yu Jing, Xu Tao, Li Jian, Xiong Li-Min, Wang Qing-Yue, Zhang Zhi-Gang. Terahertz time-frequency analysis with Gabor wavelet-transform. Acta Physica Sinica, 2008, 57(12): 7747-7752. doi: 10.7498/aps.57.7747
Metrics
  • Abstract views:  9766
  • PDF Downloads:  282
  • Cited By: 0
Publishing process
  • Received Date:  15 May 2020
  • Accepted Date:  11 June 2020
  • Available Online:  12 June 2020
  • Published Online:  20 October 2020

/

返回文章
返回