-
The non-equilibrium molecular dynamics (NEMD) method is used to study the thermal conductivities of Si/Ge superlattices with tilted interface under different period lengths, different sample lengths, and different temperatures. The simulation results are as follows. The thermal conductivity of Si/Ge superlattices varies nonmonotonically with the increase of interface angle: when the period length is 4–8 atomic layers, the thermal conductivity for the interface angle of 45° is one order of magnitude larger than those for other interface angles, and the thermal conductivity increases linearly with the sample length increasing and decreases with the temperature increasing. However, when the period length is 20 atomic layers, the thermal conductivity is weakly dependent on sample length and temperature due to the existence of phonon localization.
-
Keywords:
- superlattices /
- tilt angle /
- thermal conductivity /
- molecular dynamic simulation
[1] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar
Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin. 65 107201Google Scholar
[2] 张程宾, 程启坤, 陈永平 2014 物理学报 63 236601Google Scholar
Zhang C B, Cheng Q K, Chen Y P 2014 Acta. Phys. Sin. 63 236601Google Scholar
[3] Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Ang R 2018 Chin. Phys. B 27 47202Google Scholar
[4] Wang K X, Wang J W, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Yaer 2018 Chin. Phys. B 27 48401Google Scholar
[5] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater 30 1904704Google Scholar
[6] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep.-Rev. Sec. Phys. Lett. 860 1
[7] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401Google Scholar
Hui Z X, He P F, Dai Y, Wu A H 2014 Acta. Phys. Sin. 63 074401Google Scholar
[8] Yang R, Chen G 2004 Phys. Rev. B 69 195316Google Scholar
[9] Chen G 1998 Phys. Rev. B 57 14958Google Scholar
[10] Hu M, Poulikakos D 2012 Nano Lett. 12 5487Google Scholar
[11] Juntunen T, Vänskä O, Tittonen I 2019 Phys. Rev. Lett. 122 105901Google Scholar
[12] Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86Google Scholar
[13] Garg J, Bonini N, Marzari N 2011 Nano Lett. 11 5135Google Scholar
[14] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z F, Fitzgerald E A, Chen G 2012 Science 338 936Google Scholar
[15] Cheaito R, Polanco C A, Addamane S, Zhang J, Ghosh A W, Balakrishnan G, Hopkins P E 2018 Phys. Rev. B 97 085306Google Scholar
[16] Tian Z, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307Google Scholar
[17] Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar
[18] Garg J, Chen G 2013 Phys. Rev. B 87 93
[19] Elapolu M S R, Tabarraei A 2018 Comput. Mater. Sci. 144 161Google Scholar
[20] 刘英光, 边永庆, 韩中合 2020 物理学报 69 033101Google Scholar
Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101Google Scholar
[21] Fujii S, Yokoi T, Yoshiya M 2019 Acta Mater. 171 154Google Scholar
[22] Bagri A, Kim S P, Ruoff R S, Shenoy V B 2011 Nano Lett. 11 3917Google Scholar
[23] Tan M, Hao Y, Deng Y, Yan D, Wu Z 2018 Sci Rep 8 6384Google Scholar
[24] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar
[25] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[26] Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar
[27] Chen J, Zhang G, Li B 2010 Nano Lett. 10 3978Google Scholar
[28] Zhang Z, Chen Y, Xie Y, Zhang S 2016 Appl. Therm. Eng. 102 1075Google Scholar
[29] Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402 6
[30] Liang T, Zhou M, Zhang P, Yuan P, Yang D 2020 Int. J. Heat Mass Transfer 151 119395Google Scholar
[31] Liu Q, Luo H, Wang L, Shen S 2017 J. Phys. D-Appl. Phys. 50 065108Google Scholar
[32] Ma Y L, Zhang Z W, Chen J G, Saaskilahti K, Volz S, Chen J 2018 Carbon 135 263Google Scholar
[33] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar
[34] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2016 Phys. Rev. E 93 052141Google Scholar
[35] Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, Chen J 2019 Nanoscale 11 11839Google Scholar
[36] Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, Li B W 2018 J. Phys. Chem. Lett. 9 3959Google Scholar
[37] Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar
-
-
[1] 张玉, 吴立华, 曾李骄开, 刘叶烽, 张继业, 邢娟娟, 骆军 2016 物理学报 65 107201Google Scholar
Zhang Y, Wu L H, Zengli J K, Liu Y F, Zhang J Y, Xing J J, Luo J 2016 Acta. Phys. Sin. 65 107201Google Scholar
[2] 张程宾, 程启坤, 陈永平 2014 物理学报 63 236601Google Scholar
Zhang C B, Cheng Q K, Chen Y P 2014 Acta. Phys. Sin. 63 236601Google Scholar
[3] Chen Z Y, Wang R F, Wang G Y, Zhou X Y, Wang Z S, Yin C, Hu Q, Zhou B Q, Tang J, Ang R 2018 Chin. Phys. B 27 47202Google Scholar
[4] Wang K X, Wang J W, Li Y, Zou T, Wang X H, Li J B, Cao Z, Shi W J, Xinba Yaer 2018 Chin. Phys. B 27 48401Google Scholar
[5] Xu X, Zhou J, Chen J 2020 Adv. Funct. Mater 30 1904704Google Scholar
[6] Zhang Z W, Ouyang Y L, Cheng Y, Chen J, Li N B, Zhang G 2020 Phys. Rep.-Rev. Sec. Phys. Lett. 860 1
[7] 惠治鑫, 贺鹏飞, 戴瑛, 吴艾辉 2014 物理学报 63 074401Google Scholar
Hui Z X, He P F, Dai Y, Wu A H 2014 Acta. Phys. Sin. 63 074401Google Scholar
[8] Yang R, Chen G 2004 Phys. Rev. B 69 195316Google Scholar
[9] Chen G 1998 Phys. Rev. B 57 14958Google Scholar
[10] Hu M, Poulikakos D 2012 Nano Lett. 12 5487Google Scholar
[11] Juntunen T, Vänskä O, Tittonen I 2019 Phys. Rev. Lett. 122 105901Google Scholar
[12] Xiong R, Yang C, Wang Q, Zhang Y, Li X 2019 Int. J. Thermophys. 40 86Google Scholar
[13] Garg J, Bonini N, Marzari N 2011 Nano Lett. 11 5135Google Scholar
[14] Luckyanova M N, Garg J, Esfarjani K, Jandl A, Bulsara M T, Schmidt A J, Minnich A J, Chen S, Dresselhaus M S, Ren Z F, Fitzgerald E A, Chen G 2012 Science 338 936Google Scholar
[15] Cheaito R, Polanco C A, Addamane S, Zhang J, Ghosh A W, Balakrishnan G, Hopkins P E 2018 Phys. Rev. B 97 085306Google Scholar
[16] Tian Z, Esfarjani K, Chen G 2014 Phys. Rev. B 89 235307Google Scholar
[17] Tian Z, Esfarjani K, Chen G 2012 Phys. Rev. B 86 235304Google Scholar
[18] Garg J, Chen G 2013 Phys. Rev. B 87 93
[19] Elapolu M S R, Tabarraei A 2018 Comput. Mater. Sci. 144 161Google Scholar
[20] 刘英光, 边永庆, 韩中合 2020 物理学报 69 033101Google Scholar
Liu Y G, Bian Y Q, Han Z H 2020 Acta. Phys. Sin. 69 033101Google Scholar
[21] Fujii S, Yokoi T, Yoshiya M 2019 Acta Mater. 171 154Google Scholar
[22] Bagri A, Kim S P, Ruoff R S, Shenoy V B 2011 Nano Lett. 11 3917Google Scholar
[23] Tan M, Hao Y, Deng Y, Yan D, Wu Z 2018 Sci Rep 8 6384Google Scholar
[24] Schelling P K, Phillpot S R, Keblinski P 2002 Phys. Rev. B 65 144306Google Scholar
[25] Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar
[26] Dickey J M, Paskin A 1969 Phys. Rev. 188 1407Google Scholar
[27] Chen J, Zhang G, Li B 2010 Nano Lett. 10 3978Google Scholar
[28] Zhang Z, Chen Y, Xie Y, Zhang S 2016 Appl. Therm. Eng. 102 1075Google Scholar
[29] Zhang Z W, Hu S Q, Xi Q, Nakayama T, Volz S, Chen J, Li B W 2020 Phys. Rev. B 101 081402 6
[30] Liang T, Zhou M, Zhang P, Yuan P, Yang D 2020 Int. J. Heat Mass Transfer 151 119395Google Scholar
[31] Liu Q, Luo H, Wang L, Shen S 2017 J. Phys. D-Appl. Phys. 50 065108Google Scholar
[32] Ma Y L, Zhang Z W, Chen J G, Saaskilahti K, Volz S, Chen J 2018 Carbon 135 263Google Scholar
[33] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2014 Phys. Rev. B 90 134312Google Scholar
[34] Sääskilahti K, Oksanen J, Tulkki J, Volz S 2016 Phys. Rev. E 93 052141Google Scholar
[35] Hu S Q, Zhang Z W, Jiang P F, Ren W J, Yu C Q, Shiomi J, Chen J 2019 Nanoscale 11 11839Google Scholar
[36] Hu S Q, Zhang Z W, Jiang P F, Chen J, Volz S, Nomura M, Li B W 2018 J. Phys. Chem. Lett. 9 3959Google Scholar
[37] Zhang Z W, Hu S Q, Nakayama T, Chen J, Li B W 2018 Carbon 139 289Google Scholar
Catalog
Metrics
- Abstract views: 5233
- PDF Downloads: 113
- Cited By: 0