-
Silicon heterojunction (SHJ) solar cells have attracted much attention in the international photovoltaic market due to their high efficiencies and low costs. The quality of amorphous silicon/crystalline silicon (a-Si:H/c-Si) interfaces of SHJ solar cells has a key influence on the device performance. Therefore, the carrier recombination rate of a-Si:H/c-Si interface needs to be effectively controlled. In addition, as the important component of SHJ solar cells, the p-type emitter must meet the requirements for high conductivity, high light transmittance, and energy band matching with c-Si. The research contents and the relevant achievements of this paper include the following aspects. Firstly, in order to reduce the surface defects and realize the energy band alignment of a-Si:H/c-Si interface, the effect of passivation layer on passivation effect is studied. An ultra-thin buffer layer deposited by a low power and a high hydrogen dilution ratio is inserted between the conventional passivation layer and c-Si to improve the passivation effect and broaden the process window of passivation layer. The effects of the buffer layer thickness and hydrogen dilution ratio on passivation quality are further studied, and the best experimental conditions of buffer layer are obtained. The experimental results show that the sample with double-layered passivation layer is more stable than the conventional passivation layer. The minority carrier lifetime of the sample with single conventional passivation layer is 3.8 ms and the iVOC is 712 mV, while the minority carrier lifetime of the sample with double-layered passivation layer is 4.197 ms and the iVOC is 726 mV. Secondly, for the p-type emitters of silicon heterojunction solar cells, the effects of doping level on the photoelectric properties of p-type hydrogenated nanocrystalline silicon (nc-Si:H) thin films are studied. On this basis, the p++-nc-Si:H/p-nc-Si:H double-layer emitter with wide band gap and high conductivity is designed and fabricated. By analyzing the optical and electrical properties of different emitters, it is found that p-nc-Si:H has good electrical and optical properties. Owing to the high doping efficiency of nc-Si, a small amount of doping can obtain high conductivity. Lightly doped p-nc-Si:H provides a better contact with the passivation layer, while heavily doped p++-nc-Si:H can not only provide enough built-in electric field, but also improve the contact characteristics of p/ITO, thus enhancing the output characteristics of the cell. At the same time, the deposition of p-nc-Si:H layer with high hydrogen dilution ratio can also implement the hydrogen plasma treatment on the passivation layer, the reduction of the dangling bonds on the surface of the c-Si, the enhancement of the chemical passivation effect, and thus improving the open circuit voltage of the cell. Finally, a silicon heterojunction solar cell with an efficiency of 20.96% is obtained based on the commercial czochralski silicon wafer, with an open circuit voltage of 710 mV, a short circuit current density of 39.88 mA/cm2 and filling factor of 74.02%. -
Keywords:
- silicon heterojunction solar cell /
- passivation layer /
- emitter /
- composite structure
[1] 李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1Google Scholar
Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1Google Scholar
[2] 陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708Google Scholar
Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Science China 43 708Google Scholar
[3] Rehman A U, Lee S H 2013 Sci. World J. 11 470347Google Scholar
[4] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar
[5] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar
[6] Okuda K, Okamoto H, Hamakawa Y 1983 Jpn. J. Appl. Phys. 22 L605Google Scholar
[7] Neumuller A, Sergeev O, Heise S J, Bereznev S, Volobujeva O, Salas J F L, Vehse M, Agert C 2018 Nano Energy 43 228Google Scholar
[8] Geissbuhler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C 2013 Appl. Phys. Lett. 102 23Google Scholar
[9] Mews M, Schulze T F, Mingirulli N, Korte L 2013 Appl. Phys. Lett. 102 122106Google Scholar
[10] Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, Wolf S D, Ballif C 2015 IEEE J. Photovoltaics 5 1293Google Scholar
[11] Ru X, Qu M, Wang J, Ruan T, Yang M, Peng F, Long W, Zheng K, Yan H, Xu X 2020 Sol. Energy Mater. Sol. Cells 215 110643Google Scholar
[12] Wu Z, Zhang L, Chen R, Liu W, Li Z, Meng F, Liu Z 2019 Appl. Surf. Sci. 475 504Google Scholar
[13] Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905Google Scholar
[14] Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar
[15] Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516Google Scholar
[16] Lee Y, Kim H, Iftiquar S M, Kim S, Kim S, Ahn S, Lee Y J, Dao V A, Yi J 2014 J. Appl. Phys. 116 244506Google Scholar
[17] Boccard M, Monnard R, Antognini L, Ballif C 2018 AIP Conf. Proc. 1999 040003
[18] Richter A, Smirnov V, Lambertz A, Nomoto K, Welter K, Ding K N 2018 Sol. Energy Mater. Sol. Cells 174 196Google Scholar
[19] Li Z, Zhang L, Wu Z, Liu W, Chen R, Meng F, Liu Z 2020 J. Appl. Phys. 128 045309Google Scholar
[20] Ding K N, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi R 6 193Google Scholar
[21] Mazzarella L, Kirner S, Gabriel O, Schmidt S S, Korte L, Stannowski B, Rech B, Schlatmann R 2017 Phys. Atatus Solidi A 214 1532958Google Scholar
[22] Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar
[23] Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508Google Scholar
[24] De Wolf S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104Google Scholar
[25] De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109Google Scholar
[26] Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902Google Scholar
[27] 张晓丹, 赵颖, 高艳涛, 陈飞, 朱锋, 魏长春, 孙建, 耿新华 2006 物理学报 55 6697Google Scholar
Zhang X D, Zhao Y, Gao Y T, Chen F, Zhu F, Wei C C, Sun J, Geng X H 2006 Acta Phys. Sin. 55 6697Google Scholar
[28] Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902Google Scholar
[29] Kanevce A, Metzger W K 2009 J. Appl. Phys. 105 094507Google Scholar
[30] Madani Ghahfarokhi O, von Maydell K, Agert C 2014 Appl. Phys. Lett. 104 113901Google Scholar
[31] Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar
[32] Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovoltaics 4 1433Google Scholar
[33] Hao L C, Zhang M, Ni M, Shen X L, Feng X D 2019 J. Electron. Mater. 48 4688Google Scholar
-
表 1 重掺杂层不同氢稀释比的电池具体参数
Table 1. J -V parameters of SHJ solar cells with different hydrogen dilution ratio in the p++-nc-Si:H layer.
H2∶SiH4∶TMB JSC/mA·cm–2 VOC/V FF/% Eff /% 120∶4∶4 38.7 0.709 66.57 18.26 160∶4∶4 38.91 0.710 69.08 19.08 200∶4∶4 39.15 0.709 70.84 19.66 240∶4∶4 38.4 0.708 65.56 17.8 表 2 重掺杂层不同掺杂量的电池具体参数
Table 2. J -V parameters of SHJ solar cells with different TMB flow rate in the p++-nc-Si:H layer.
H2∶SiH4∶TMB JSC/mA·cm–2 VOC/V FF/% Eff/% 200∶4∶4 39.15 0.709 70.84 19.66 200∶4∶4.8 39.37 0.708 71.86 20.03 200∶4∶5.6 38.79 0.709 69.71 19.17 200∶4∶6.4 38.7 0.710 63.20 17.3 -
[1] 李志学, 吴硕锋, 雷理钊 2018 价格月刊 12 1Google Scholar
Li Z X, Wu S F, Lei L Z 2018 Prices Monthly 12 1Google Scholar
[2] 陈晨, 张巍, 贾锐, 张代生, 邢钊, 金智, 刘新宇 2013 中国科学 43 708Google Scholar
Chen C, Zhang W, Jia R, Zhang D S, Xing Z, Jin Z, Liu X Y 2013 Science China 43 708Google Scholar
[3] Rehman A U, Lee S H 2013 Sci. World J. 11 470347Google Scholar
[4] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M, Uzu H, Yamamoto K 2017 Sol. Energy Mater. Sol. Cells 173 37Google Scholar
[5] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K, Maruyama E 2014 IEEE J. Photovoltaics 4 96Google Scholar
[6] Okuda K, Okamoto H, Hamakawa Y 1983 Jpn. J. Appl. Phys. 22 L605Google Scholar
[7] Neumuller A, Sergeev O, Heise S J, Bereznev S, Volobujeva O, Salas J F L, Vehse M, Agert C 2018 Nano Energy 43 228Google Scholar
[8] Geissbuhler J, De Wolf S, Demaurex B, Seif J P, Alexander D T L, Barraud L, Ballif C 2013 Appl. Phys. Lett. 102 23Google Scholar
[9] Mews M, Schulze T F, Mingirulli N, Korte L 2013 Appl. Phys. Lett. 102 122106Google Scholar
[10] Paviet-Salomon B, Tomasi A, Descoeudres A, Barraud L, Nicolay S, Despeisse M, Wolf S D, Ballif C 2015 IEEE J. Photovoltaics 5 1293Google Scholar
[11] Ru X, Qu M, Wang J, Ruan T, Yang M, Peng F, Long W, Zheng K, Yan H, Xu X 2020 Sol. Energy Mater. Sol. Cells 215 110643Google Scholar
[12] Wu Z, Zhang L, Chen R, Liu W, Li Z, Meng F, Liu Z 2019 Appl. Surf. Sci. 475 504Google Scholar
[13] Korte L, Conrad E, Angermann H, Stangl R, Schmidt M 2009 Sol. Energy Mater. Sol. Cells 93 905Google Scholar
[14] Ling Z P, Ge J, Mueller T, Wong J, Aberle A G 2012 Energy Procedia 15 118Google Scholar
[15] Pysch D, Meinhard C, Harder N P, Hermle M, Glunz S W 2011 J. Appl. Phys. 110 094516Google Scholar
[16] Lee Y, Kim H, Iftiquar S M, Kim S, Kim S, Ahn S, Lee Y J, Dao V A, Yi J 2014 J. Appl. Phys. 116 244506Google Scholar
[17] Boccard M, Monnard R, Antognini L, Ballif C 2018 AIP Conf. Proc. 1999 040003
[18] Richter A, Smirnov V, Lambertz A, Nomoto K, Welter K, Ding K N 2018 Sol. Energy Mater. Sol. Cells 174 196Google Scholar
[19] Li Z, Zhang L, Wu Z, Liu W, Chen R, Meng F, Liu Z 2020 J. Appl. Phys. 128 045309Google Scholar
[20] Ding K N, Aeberhard U, Finger F, Rau U 2012 Phys. Status Solidi R 6 193Google Scholar
[21] Mazzarella L, Kirner S, Gabriel O, Schmidt S S, Korte L, Stannowski B, Rech B, Schlatmann R 2017 Phys. Atatus Solidi A 214 1532958Google Scholar
[22] Descoeudres A, Barraud L, De Wolf S, Strahm B, Lachenal D, Guérin C, Holman Z C, Zicarelli F, Demaurex B, Seif J, Holovsky J, Ballif C 2011 Appl. Phys. Lett. 99 123506Google Scholar
[23] Fujiwara H, Kaneko T, Kondo M 2007 Appl. Phys. Lett. 91 133508Google Scholar
[24] De Wolf S, Beaucarne G 2006 Appl. Phys. Lett. 88 022104Google Scholar
[25] De Wolf S, Kondo M 2007 Appl. Phys. Lett. 91 112109Google Scholar
[26] Mazzarella L, Kirner S, Stannowski B, Korte L, Rech B, Schlatmann R 2015 Appl. Phys. Lett. 106 023902Google Scholar
[27] 张晓丹, 赵颖, 高艳涛, 陈飞, 朱锋, 魏长春, 孙建, 耿新华 2006 物理学报 55 6697Google Scholar
Zhang X D, Zhao Y, Gao Y T, Chen F, Zhu F, Wei C C, Sun J, Geng X H 2006 Acta Phys. Sin. 55 6697Google Scholar
[28] Mews M, Liebhaber M, Rech B, Korte L 2015 Appl. Phys. Lett. 107 013902Google Scholar
[29] Kanevce A, Metzger W K 2009 J. Appl. Phys. 105 094507Google Scholar
[30] Madani Ghahfarokhi O, von Maydell K, Agert C 2014 Appl. Phys. Lett. 104 113901Google Scholar
[31] Mishima T, Taguchi M, Sakata H, Maruyama E 2011 Sol. Energy Mater. Sol. Cells 95 18Google Scholar
[32] Masuko K, Shigematsu M, Hashiguchi T, Fujishima D, Kai M, Yoshimura N, Yamaguchi T, Ichihashi Y, Mishima T, Matsubara N, Yamanishi T, Takahama T, Taguchi M, Maruyama E, Okamoto S 2014 IEEE J. Photovoltaics 4 1433Google Scholar
[33] Hao L C, Zhang M, Ni M, Shen X L, Feng X D 2019 J. Electron. Mater. 48 4688Google Scholar
Catalog
Metrics
- Abstract views: 8121
- PDF Downloads: 289
- Cited By: 0