Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherent electrical control of single electron spin in diamond nitrogen-vacancy center

Wu Jian-Dong Cheng Zhi Ye Xiang-Yu Li Zhao-Kai Wang Peng-Fei Tian Chang-Lin Chen Hong-Wei

Citation:

Coherent electrical control of single electron spin in diamond nitrogen-vacancy center

Wu Jian-Dong, Cheng Zhi, Ye Xiang-Yu, Li Zhao-Kai, Wang Peng-Fei, Tian Chang-Lin, Chen Hong-Wei
PDF
HTML
Get Citation
  • The nitrogen-vacancy (NV) color center quantum system in diamond has shown great application potential in the fields of solid-state quantum computing and quantum precision measurement because of its unique advantages such as single-spin addressing and manipulation and long quantum coherence time at room temperature. The precise manipulation technology of single spin is particularly important for the development of the application of NV center. The common spin manipulation methods used in NV center quantum system are to drive and manipulate the electron spin by resonant alternating magnetic field. In recent years, the electrical control of quantum spin has attracted extensive attention. In this paper, using the alternating electric field to control the electron spin of NV center is studied. The alternating electric field generated by the electrode successfully drives the Rabi oscillation of the NV center spin between the $\Delta m_{\rm{s}}=\pm2$ magnetic-dipole forbidden energy levels of $|m_{\rm{s}}=-1\rangle$ and $|m_{\rm{s}}=+1\rangle$. Further studies show that the frequency of the electrically driven Rabi oscillation is controlled by the power of the driven electric field but independent of the resonant frequency of the electric field. The combination of spin electric control and magnetic control technology can realize the full manipulation of the direct transition among the three spin energy levels of NV center, thus promoting the development of the researches and applications of NV quantum system in the fields of quantum simulation, quantum computing, precision measurement of electromagnetic field, etc.
      Corresponding author: Tian Chang-Lin, cltian@ustc.edu.cn ; Chen Hong-Wei, hwchen@hmfl.ac.cn
    • Funds: Project supported by Hefei Science Center, Chinese Academy of Sciences (Grant No. 2021HSC-KPRD003) and the National Natural Science Foundation of China (Grant No. 92165108)
    [1]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, vonBorczyskowski C 1997 Science 276 2012Google Scholar

    [2]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542Google Scholar

    [3]

    刘刚钦, 邢健, 潘新宇 2018 物理学报 67 120302Google Scholar

    Liu G Q, Xing J, Pan X Y 2018 Acta Phys. Sin. 67 120302Google Scholar

    [4]

    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Mater. 8 383Google Scholar

    [5]

    Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat. Commun. 25 8748Google Scholar

    [6]

    Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbruggen T, Abe H, Ohshima T, Isoya J, Du J F, Neumann P, Wrachtrup J 2014 Nature 506 204Google Scholar

    [7]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304Google Scholar

    [8]

    董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301Google Scholar

    Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar

    [9]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810Google Scholar

    [10]

    Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X, Duan C K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar

    [11]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [12]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [13]

    Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [14]

    Dolde F, Doherty M W, Michl J, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Neumann P, Jelezko F, Manson N B, Wrachtrup J 2014 Phys. Rev. Lett. 112 097603Google Scholar

    [15]

    Michl J, Steiner J, Denisenko A, Bulau A, Zimmermann A, Nakamura K, Sumiya H, Onoda S, Neumann P, Isoya J, Wrachtrup J 2019 Nano Lett. 19 4904Google Scholar

    [16]

    Li R, Kong F, Zhao P J, Cheng Z, Qin Z Y, Wang M Q, Zhang Q, Wang P f, Wang Y, Shi F Z, Du J F 2020 Phys. Rev. Lett. 124 247701Google Scholar

    [17]

    Barson M S J, Oberg L M, McGuinness L P, Denisenko A, Manson N B, Wrachtrup J, Doherty M W 2021 Nano Lett. 21 2962Google Scholar

    [18]

    Bian K, Zheng W T, Zeng X Z, Chen X K, Stoehr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y 2021 Nat. Commun. 12 2457Google Scholar

    [19]

    Zhao P J, Kong F, Li R, Shi F Z, Du J F 2021 Acta Phys. Sin. 70 213301Google Scholar

    [20]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L, Prawer S 2014 Phys. Rev. Lett. 112 047601Google Scholar

    [21]

    Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar

    [22]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [23]

    Choi J, Zhou H, Landig R, Wu H-Y, Yu X, Von Stetina S E, Kucsko G, Mango S, Needleman D J, Samuel A D T, Maurer P C, Park H, Lukin M D 2020 P. Nat. Acad. Sci. USA 117 14636Google Scholar

    [24]

    Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E 2020 Science Advances 6 37Google Scholar

    [25]

    Mueller C, Kong X, Cai J M, Melentijevic K, Stacey A, Markham M, Twitchen D, Isoya J, Pezzagna S, Meijer J, Du J F, Plenio M B, Naydenov B, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4703Google Scholar

    [26]

    Nowack K C, Koppens F H L, Nazarov Y V, Vandersypen L M K 2007 Science 318 1430Google Scholar

    [27]

    Klimov P V, Falk A L, Buckley B B, Awschalom D D 2014 Phys. Rev. Lett. 112 187601Google Scholar

    [28]

    Asaad S, Mourik V, Joecker B, Johnson M A I, Baczewski A D, Firgau H R, Madzik M T, Schmitt V, Pla J J, Hudson F E, Itoh K M, McCallum J C, Dzurak A S, Laucht A, Morello A 2020 Nature 579 205Google Scholar

    [29]

    Yang B, Murooka T, Mizuno K, Kim K, Kato H, Makino T, Ogura M, Yamasaki S, Schmidt M E, Mizuta H, Yacoby A, Hatano M, Iwasaki T 2020 Phys. Rev. Appl. 14 044049Google Scholar

    [30]

    Loubser J, van Wyk J 1977 Diamond Research 9 11

    [31]

    MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar

    [32]

    Vanoort E, Glasbeek M 1990 Chemical Physics Letters 168 529Google Scholar

    [33]

    Rabeau J R, Reichart P, Tamanyan G, Jamieson D N, Prawer S, Jelezko F, Gaebel T, Popa I, Domhan M, Wrachtrup J 2006 Appl. Phys. Lett. 88 023113Google Scholar

    [34]

    Liu P, Yen R, Bloembergen N 1978 IEEE J. Quantum Elect. 14 574Google Scholar

  • 图 1  (a) NV色心结构图; (b) 存在轴向磁场$B_{z}$下NV色心的基态能级图, $|\uparrow \rangle$$|\downarrow \rangle$代表$^{15}{\rm{N}}$核自旋朝向; 黄色和蓝色箭头分别代表$\Delta m_{{\rm{s}}}=\pm 1$跃迁和$\Delta m_{{\rm{s}}}=\pm 2$跃迁

    Figure 1.  (a) Structure diagram of the NV center; (b) energy level diagram for the NV ground-state spin in the presence of an axial magnetic field $B_{z}$, $|\uparrow \rangle$ and $|\downarrow \rangle$ represent the spin orientation of $^{15}{\rm{N}}$; $\Delta m_{{\rm{s}}} = \pm 1$ transitions (yellow arrows) and the $\Delta m_{{\rm{s}}} = \pm 2$ transition (blue arrows) are indicated.

    图 2  (a)电极和微波线的结构设计简图; (b) 激光共聚焦扫描NV色心的荧光图

    Figure 2.  (a) Structural design diagram of electrode and microwave line; (b) fluorescence diagram of NV centers scanned by a laser scanning confocal microscope.

    图 3  (a) ODMR的频率谱; (b) NV色心电子自旋的相干时间测量. $ ^{12}{\rm{C}}$纯化延长了电子自旋的相干时间, 弛豫时间$T_{2}$经指数衰减函数${\rm{exp}}[-(2 \tau/T_{2})^2]$(红线)拟合约为$1.6\ {\rm{ms}}$

    Figure 3.  (a) The frequency spectrum of ODMR; (b) coherent time measurement of electron spin in NV center. The purification of $ ^{12}{\rm{C}}$ prolongs the coherence time of electron spin, and the relaxation time $T_{2}$ is estimated to be $1.6\ {\rm{ms}}$ through the exponential attenuation function ${\rm{exp}}[-(2 \tau/T_{2})^2]$ (red line).

    图 4  (a) EODMR脉冲序列及自旋跃迁示意图; (b) EODMR的共振峰谱图

    Figure 4.  (a) EODMR pulse sequence and spin transition diagram; (b) the resonance peak spectrum of EODMR.

    图 5  (a) ERabi脉冲序列; (b) 在不同电场驱动功率的作用下, NV色心电子自旋的ERabi振荡谱

    Figure 5.  (a) ERabi pulse sequence; (b) ERabi oscillatory spectrum of electron spin in NV center under the action of different electric field driving power.

    图 6  不同共振频率下电场功率与电子自旋的 ERabi 振荡频率的关系

    Figure 6.  Relationship between electric field power and ERabi oscillation frequency of electron spins at different resonance frequencies.

  • [1]

    Gruber A, Drabenstedt A, Tietz C, Fleury L, Wrachtrup J, vonBorczyskowski C 1997 Science 276 2012Google Scholar

    [2]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R, Wrachtrup J, Jelezko F 2010 Science 329 542Google Scholar

    [3]

    刘刚钦, 邢健, 潘新宇 2018 物理学报 67 120302Google Scholar

    Liu G Q, Xing J, Pan X Y 2018 Acta Phys. Sin. 67 120302Google Scholar

    [4]

    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer P R, Jelezko F, Wrachtrup J 2009 Nat. Mater. 8 383Google Scholar

    [5]

    Rong X, Geng J P, Shi F Z, Liu Y, Xu K B, Ma W C, Kong F, Jiang Z, Wu Y, Du J F 2015 Nat. Commun. 25 8748Google Scholar

    [6]

    Waldherr G, Wang Y, Zaiser S, Jamali M, Schulte-Herbruggen T, Abe H, Ohshima T, Isoya J, Du J F, Neumann P, Wrachtrup J 2014 Nature 506 204Google Scholar

    [7]

    Liu G Q, Pan X Y 2018 Chin. Phys. B 27 020304Google Scholar

    [8]

    董杨, 杜博, 张少春, 陈向东, 孙方稳 2018 物理学报 67 160301Google Scholar

    Dong Y, Du B, Zhang S C, Chen X D, Sun F W 2018 Acta Phys. Sin. 67 160301Google Scholar

    [9]

    Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R, Lukin M D 2008 Nat. Phys. 4 810Google Scholar

    [10]

    Wang P F, Yuan Z H, Huang P, Rong X, Wang M Q, Xu X, Duan C K, Ju C Y, Shi F Z, Du J F 2015 Nat. Commun. 6 6631Google Scholar

    [11]

    彭世杰, 刘颖, 马文超, 石发展, 杜江峰 2018 物理学报 67 167601Google Scholar

    Peng S J, Liu Y, Ma W C, Shi F Z, Du J F 2018 Acta Phys. Sin. 67 167601Google Scholar

    [12]

    王成杰, 石发展, 王鹏飞, 段昌奎, 杜江峰 2018 物理学报 67 130701Google Scholar

    Wang C J, Shi F Z, Wang P F, Duan C K, Du J F 2018 Acta Phys. Sin. 67 130701Google Scholar

    [13]

    Dolde F, Fedder H, Doherty M W, Nobauer T, Rempp F, Balasubramanian G, Wolf T, Reinhard F, Hollenberg L C L, Jelezko F, Wrachtrup J 2011 Nat. Phys. 7 459Google Scholar

    [14]

    Dolde F, Doherty M W, Michl J, Jakobi I, Naydenov B, Pezzagna S, Meijer J, Neumann P, Jelezko F, Manson N B, Wrachtrup J 2014 Phys. Rev. Lett. 112 097603Google Scholar

    [15]

    Michl J, Steiner J, Denisenko A, Bulau A, Zimmermann A, Nakamura K, Sumiya H, Onoda S, Neumann P, Isoya J, Wrachtrup J 2019 Nano Lett. 19 4904Google Scholar

    [16]

    Li R, Kong F, Zhao P J, Cheng Z, Qin Z Y, Wang M Q, Zhang Q, Wang P f, Wang Y, Shi F Z, Du J F 2020 Phys. Rev. Lett. 124 247701Google Scholar

    [17]

    Barson M S J, Oberg L M, McGuinness L P, Denisenko A, Manson N B, Wrachtrup J, Doherty M W 2021 Nano Lett. 21 2962Google Scholar

    [18]

    Bian K, Zheng W T, Zeng X Z, Chen X K, Stoehr R, Denisenko A, Yang S, Wrachtrup J, Jiang Y 2021 Nat. Commun. 12 2457Google Scholar

    [19]

    Zhao P J, Kong F, Li R, Shi F Z, Du J F 2021 Acta Phys. Sin. 70 213301Google Scholar

    [20]

    Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C L, Prawer S 2014 Phys. Rev. Lett. 112 047601Google Scholar

    [21]

    Neumann P, Jakobi I, Dolde F, Burk C, Reuter R, Waldherr G, Honert J, Wolf T, Brunner A, Shim J H, Suter D, Sumiya H, Isoya J, Wrachtrup J 2013 Nano Lett. 13 2738Google Scholar

    [22]

    Kucsko G, Maurer P C, Yao N Y, Kubo M, Noh H J, Lo P K, Park H, Lukin M D 2013 Nature 500 54Google Scholar

    [23]

    Choi J, Zhou H, Landig R, Wu H-Y, Yu X, Von Stetina S E, Kucsko G, Mango S, Needleman D J, Samuel A D T, Maurer P C, Park H, Lukin M D 2020 P. Nat. Acad. Sci. USA 117 14636Google Scholar

    [24]

    Fujiwara M, Sun S, Dohms A, Nishimura Y, Suto K, Takezawa Y, Oshimi K, Zhao L, Sadzak N, Umehara Y, Teki Y, Komatsu N, Benson O, Shikano Y, Kage-Nakadai E 2020 Science Advances 6 37Google Scholar

    [25]

    Mueller C, Kong X, Cai J M, Melentijevic K, Stacey A, Markham M, Twitchen D, Isoya J, Pezzagna S, Meijer J, Du J F, Plenio M B, Naydenov B, McGuinness L P, Jelezko F 2014 Nat. Commun. 5 4703Google Scholar

    [26]

    Nowack K C, Koppens F H L, Nazarov Y V, Vandersypen L M K 2007 Science 318 1430Google Scholar

    [27]

    Klimov P V, Falk A L, Buckley B B, Awschalom D D 2014 Phys. Rev. Lett. 112 187601Google Scholar

    [28]

    Asaad S, Mourik V, Joecker B, Johnson M A I, Baczewski A D, Firgau H R, Madzik M T, Schmitt V, Pla J J, Hudson F E, Itoh K M, McCallum J C, Dzurak A S, Laucht A, Morello A 2020 Nature 579 205Google Scholar

    [29]

    Yang B, Murooka T, Mizuno K, Kim K, Kato H, Makino T, Ogura M, Yamasaki S, Schmidt M E, Mizuta H, Yacoby A, Hatano M, Iwasaki T 2020 Phys. Rev. Appl. 14 044049Google Scholar

    [30]

    Loubser J, van Wyk J 1977 Diamond Research 9 11

    [31]

    MacQuarrie E R, Gosavi T A, Jungwirth N R, Bhave S A, Fuchs G D 2013 Phys. Rev. Lett. 111 227602Google Scholar

    [32]

    Vanoort E, Glasbeek M 1990 Chemical Physics Letters 168 529Google Scholar

    [33]

    Rabeau J R, Reichart P, Tamanyan G, Jamieson D N, Prawer S, Jelezko F, Gaebel T, Popa I, Domhan M, Wrachtrup J 2006 Appl. Phys. Lett. 88 023113Google Scholar

    [34]

    Liu P, Yen R, Bloembergen N 1978 IEEE J. Quantum Elect. 14 574Google Scholar

  • [1] Shen Yuan-Yuan, Wang Bo, Ke Dong-Qian, Zheng Dou-Dou, Li Zhong-Hao, Wen Huan-Fei, Guo Hao, Li Xin, Tang Jun, Ma Zong-Min, Li Yan-Jun, Igor Vladimirovich Yaminsky, Liu Jun. High-frequency resolution diamond nitrogen-vacancy center wide-spectrum imaging technology. Acta Physica Sinica, 2024, 73(6): 067601. doi: 10.7498/aps.73.20231833
    [2] Li Jun-Peng, Ren Ze-Yang, Zhang Jin-Feng, Wang Han-Xue, Ma Yuan-Chen, Fei Yi-Fan, Huang Si-Yuan, Ding Sen-Chuan, Zhang Jin-Cheng, Hao Yue. Formation mechanism and regulation of silicon vacancy centers in polycrystalline diamond films. Acta Physica Sinica, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [3] He Jian, Jia Yan-Wei, Tu Ju-Ping, Xia Tian, Zhu Xiao-Hua, Huang Ke, An Kang, Liu Jin-Long, Chen Liang-Xian, Wei Jun-Jun, Li Cheng-Ming. Generation of shallow nitrogen-vacancy centers in diamond with carbon ion implantation. Acta Physica Sinica, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [4] Lin Hao-Bin, Zhang Shao-Chun, Dong Yang, Zheng Yu, Chen Xiang-Dong, Sun Fang-Wen. Temperature sensing with nitrogen vacancy center in diamond. Acta Physica Sinica, 2022, 71(6): 060302. doi: 10.7498/aps.71.20211822
    [5] Wu Jian-Dong,  Cheng Zhi,  Ye Xiang-Yu,  Li Zhao-Kai,  Wang Peng-Fei,  Tian Chang-Lin,  Cheng Hong-Wei. Coherent electrical control of a single electron spin in diamond nitrogen-vacancy centers. Acta Physica Sinica, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [6] Shen Xiang, Zhao Li-Ye, Huang Pu, Kong Xi, Ji Lu-Min. Atomic spin and phonon coupling mechanism of nitrogen-vacancy center. Acta Physica Sinica, 2021, 70(6): 068501. doi: 10.7498/aps.70.20201848
    [7] Wang Kai-Yue, Guo Rui-Ang, Wang Hong-Xing. Temperature dependence of nitrogen-vacancy optical center in diamond. Acta Physica Sinica, 2020, 69(12): 127802. doi: 10.7498/aps.69.20200395
    [8] Chen Long, Chen Cheng-Ke, Li Xiao, Hu Xiao-Jun. Effects of oxidation on silicon vacancy photoluminescence and microstructure of separated domain formed nanodiamond films. Acta Physica Sinica, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [9] Peng Shijie, Liu Ying, Ma Wenchao, Shi Fazhan, Du Jiangfeng. High-resolution magnetometry based on nitrogen-vacancy centers in diamond. Acta Physica Sinica, 2018, 67(16): 167601. doi: 10.7498/aps.67.20181084
    [10] Dong Yang, Du Bo, Zhang Shao-Chun, Chen Xiang-Dong, Sun Fang-Wen. Solid quantum sensor based on nitrogen-vacancy center in diamond. Acta Physica Sinica, 2018, 67(16): 160301. doi: 10.7498/aps.67.20180788
    [11] Fang Chao, Jia Xiao-Peng, Yan Bing-Min, Chen Ning, Li Ya-Dong, Chen Liang-Chao, Guo Long-Suo, Ma Hong-An. Effects of nitrogen and hydrogen co-doped on {100}-oriented single diamond under high temperature and high pressure. Acta Physica Sinica, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [12] Zhang Xiu-Zhi, Wang Kai-Yue, Li Zhi-Hong, Zhu Yu-Mei, Tian Yu-Ming, Chai Yue-Sheng. Effect of nitrogen on the defect luminescence in diamond. Acta Physica Sinica, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [13] Yan Bing-Min, Jia Xiao-Peng, Qin Jie-Ming, Sun Shi-Shuai, Zhou Zhen-Xiang, Fang Chao, Ma Hong-An. Characterization of typical infrared characteristic peaks of hydrogen in nitrogen and hydrogen co-doped diamond crystals. Acta Physica Sinica, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [14] Wang Wen-Juan, Wang Hai-Long, Gong Qian, Song Zhi-Tang, Wang Hui, Feng Song-Lin. External electric field effect on exciton binding energy in InGaAsP/InP quantum wells. Acta Physica Sinica, 2013, 62(23): 237104. doi: 10.7498/aps.62.237104
    [15] Wang Kai-Yue, Zhu Yu-Mei, Li Zhi-Hong, Tian Yu-Ming, Chai Yue-Sheng, Zhao Zhi-Gang, Liu Kai. The defect luminescences of {100} sector in nitrogen-doped diamond. Acta Physica Sinica, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [16] Lin Xue-Ling, Pan Feng-Chun. The magnetism study of N-doped diamond. Acta Physica Sinica, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [17] Liang Zhong-Zhu, Liang Jing-Qiu, Zheng Na, Jia Xiao-Peng, Li Gui-Ju. Optical absorbance of diamond doped with nitrogen and the nitrogen concentration analysis. Acta Physica Sinica, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [18] Li Rong-Bin. Atomic-scale study of boron-nitrogen co-doping into diamond. Acta Physica Sinica, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [19] Liu Yan-Yan, Bauer-Grosse E., Zhang Qing-Yu. Structure and growth behavior of low N-doped diamond film by microwave plasma assisted chemical vapor deposition. Acta Physica Sinica, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [20] Hu Xiao-Jun, Dai Yong-Bing, He Xian-Chang, Shen He-Sheng, Li Rong-Bin. . Acta Physica Sinica, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
Metrics
  • Abstract views:  6111
  • PDF Downloads:  432
  • Cited By: 0
Publishing process
  • Received Date:  07 March 2022
  • Accepted Date:  27 March 2022
  • Available Online:  24 May 2022
  • Published Online:  05 June 2022

/

返回文章
返回